Stochastic Programming Models and Algorithms for Pharmaceutical R&D Planning

Matthew Colvin & Christos T. Maravelias
Department of Chemical and Biological Engineering, University of Wisconsin
Madison, WI 53706, USA

ICSP 2013
July 8-12, 2013, Bergamo, Italy
Exogenous and Endogenous Uncertainty in Stochastic Programming
Outline

- Introduction
- Theoretical Properties
- Solution Algorithms
- Extensions
- Applications
Problem Statement

Given:
- Portfolio of products $i \in I = \{1, 2, \ldots\}$ in the R&D pipeline; revenue function if successful
- Clinical trials $j \in J = \{\text{PI, PII, PIII}\}$ for each drug: duration, cost, resource requirements, success probability
- Limited resources $r \in R$; availability & cost

Decisions:
- Product selection & timing of trials to maximize the expected net present value (ENPV) of the R&D pipeline

Uncertainty Sources

Types of uncertainty
- Market: competition & patent issues
- Technical: clinical trial outcome, duration, cost, and resource requirements

Trial outcome uncertainty most important: if a single trial fails, previous investment is wasted

Scenarios

Outcome of trial (i,j): uncertain parameter ξ_{ij} from $\Omega_{ij}=\{F,P\}$

Outcome of drug i: ξ_i from $\Omega_i=\{\text{PI-F, PII-F, PIII-F, PIII-P}\}$

Reklaitis, Pekny et al.; Grossmann et al.; Maranas et al.; Solak et al.
Multi-stage Stochastic Programming Formulation

Variables:

- \(X_{ijts} = 1 \) if trial \((i,j)\) starts in stage \(t\) in scenario \(s\)
- \(Y_{ijts} = 1 \) if trial \((i,j)\) is finished by stage \(t\) in scenario \(s\)
- \(Z_{ijts} = 1 \) if trial \((i,j)\) is idle in stage \(t\) in scenario \(s\)

Variable definition:

- \(Y_{i,j,t,s} = X_{i,j,t-1,s} + X_{i,j,t-\tau_{ij},s} \), \(\forall i, j, t, s \)
- \(Z_{ijts} = X_{ij,t-1,s} + X_{i,j,-t-\tau_{ij},s} - X_{ijts} \), \(\forall i, j, t, s \)

Sequencing:

\[\sum_{t' \leq t} X_{ijt's} \leq Y_{i,j,t-1,s}, \forall i, j \in \{PII, PIII\}, t, s \]

Resource constraints:

\[\sum_{t} \sum_{j} \sum_{t' > t-\tau_{ij}} \rho_{ijr} X_{ijt's} \leq \rho_r^{\max}, \forall r, t, s \]

Objective:

\[\max ENPV = \sum_{s} p_s (Rv_s - Cst_s) \]
Endogenous Observation of Uncertainty

Clinical trials planning: We (i.e. the optimization) determine when scenarios become distinguishable.

Example:
Drugs D1 & D2 have to undergo PIII

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Trial Outcome</th>
<th>Initial</th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s=1</td>
<td>1) Pass</td>
<td>Pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pass</td>
<td>Fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fail</td>
<td>Pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fail</td>
<td>Fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Solution 1: No trial
- Solution 2: D1 trial at t=1
- Solution 3: D1 trial at t=1, D2 trial at t=2
- Solution 4: D2 trial at t=1, D1 trial at t=2

Exogenous Uncertainty with Endogenous Observation

- **Dynamic** scenario tree: \(t^{s,s'} \) is unknown
- **Non-anticipativity:** \(\{ t < t^{s,s'} \} \Rightarrow x_{ts} = x_{ts'} \ \forall t, s, s' \) (2)
- **Transformation to MIP constraint:** \(-y_{tss'} \leq x_{ts} - x_{ts'} \leq y_{tss'}, \ \forall s, s', t > 1\)

- \(O(TS^2)\) new variables
- \(O(MTS^2) = O(IJT(4^I)^2)\) inequalities; cannot be used to eliminate variables & constraints
- T=6, I=3 \(\rightarrow\) 73,728; I=4 \(\rightarrow\) 1,572,864

Pflug (1990); Jonsbraten et al. (1998); Grossmann et al. (2006, 2008); Van Hentenryck et al. (2006, 2008)
Outline

- Introduction
- Theoretical Properties
- Solution Algorithms
- Extensions
- Applications
Modeling of Non-anticipativity

Example:
Drugs D1 & D2 have to undergo PIII

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Trial Outcome</th>
<th>S</th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pass</td>
<td>1</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pass</td>
<td>2</td>
<td>Fail</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fail</td>
<td>3</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fail</td>
<td>4</td>
<td>Fail</td>
<td></td>
</tr>
</tbody>
</table>

Solution 1:
No trial

Solution 2:
D1 trial at $t=1$

Solution 3:
D1 trial at $t=1$
D2 trial at $t=2$

Solution 4:
D2 trial at $t=1$
D1 trial at $t=2$

Scenarios 1 & 2 become distinguishable from 3 & 4 upon completion of (D1, PIII)
Scenarios 1 & 3 become distinguishable from 2 & 4 upon completion of (D2, PIII)

- We want to enforce:

 \[
 \{t < t^{s,s'}\} \Rightarrow \{X_{ijts} = X_{ijts'}, \forall i, j\} \quad \forall t, (s, s') \quad (3)
 \]

- For every pair (s, s'), we know the differentiating trial $(i^{s,s'}, j^{s,s'})$

- Pair (s, s') is indistinguishable until the completion of $(i^{s,s'}, j^{s,s'})$; i.e. if $Y_{i^{s,s'}, j^{s,s'}, st} = 0$

- Equation (3) can be re-written:

 \[
 \{Y_{i^{s,s'}, j^{s,s'}, t,s} = 0\} \Rightarrow \{X_{ijts} = X_{ijts'}, \forall i, j\} \quad \forall t, (s, s')
 \]

 \[
 -Y_{i^{s,s'}, j^{s,s'}, t,s} \leq X_{ijts} - X_{ijts'} \leq Y_{i^{s,s'}, j^{s,s'}, t,s} \quad \forall i, j, t, (s, s') \quad (4)
 \]

- No new variables needed; $O(MTS^2)$ constraints

- **Can we reduce the number of non-anticipativity constraints?**
Non-anticipativity Constraints (NACs)

Example

Scenario 1: (D1, PI) fails; (D2, PI) fails.
Scenario 2: (D1, PI) passes, (D1, PII) fails; (D2, PI) fails.
Scenario 3: (D1, PI) and (D1, PII) pass, (D1, PIII) fails; (D2, PI) fails.
Scenario 6: (D1, PI) passes, (D1, PII) fails; (D2, PI) passes, (D2, PII) fails.

Scenarios 1 & 6
Differ in the outcome of (D1, PI) and (D2, PI).
⇒ indistinguishable until (D1, PI) or (D2, PI) completed

Non-anticipativity between scenarios 1 & 6 is enforced via scenario 2 or 5

Scenarios 1 & 3
Differ in the outcome of (D1, PI) (and (D1, PII)?)
⇒ indistinguishable until (D1, PI) (or (D1, PII)?) is completed

Non-anticipativity between scenarios 1 & 3 is enforced via scenario 2
Non-anticipativity Constraints (NACs)

Example

Scenario 1: (D1, PI) fails; (D2, PI) fails.
Scenario 2: (D1, PI) passes, (D1, PII) fails; (D2, PI) fails.
Scenario 3: (D1, PI) and (D1, PII) pass, (D1, PIII) fails; (D2, PI) fails.
Scenario 6: (D1, PI) passes, (D1, PII) fails; (D2, PI) passes, (D2, PII) fails.
Theoretical Properties

Property 1. It is sufficient to express NACs only for pairs of scenarios \((s, s')\) that differ in the outcome of a single drug; i.e., \((s, s')\) does not need to be pairwise constrained if \(\xi_i^s \neq \xi_i^{s'}\) and \(\xi_i^s \neq \xi_i^{s'}\) for any \((i, i') | i \neq i'\).

For a constrained pair \((s, s')\) we will call the drug in which they differ the critical drug and denote it by \(i^{s,s'}\).

Property 2. It is sufficient to express NACs only for pairs of scenarios \((s, s')\) that differ in the outcome of a single trial; i.e., \((s, s')\) does not need to be pairwise constrained if \(\xi_i^s\) and \(\xi_i^{s'}\) are not consecutive elements in \(\Omega_i\).

For the constrained scenario pair \((s, s')\) we will call the trial in which they differ the critical trial and denote it by \((i^{s,s'}, j^{s,s'})\). The reduced set of scenario pairs that must be constrained will be denoted by \(\Psi\).

Property 3. For a given scenario pair \((s, s') \in \Psi\), uncertainty can be treated as exogenous for \(t < t_{\min}^{s,s'} = \tau_{i^{s,s'}, f(i)} + \ldots + \tau_{i^{s,s'}, j^{s,s'}} + 1\)

Property 4. Decision variables \(X_{i^{s,s'}, f(i)}\) for trials \((i^{s,s'}, f(i^{s,s'})), \ldots, (i^{s,s'}, j^{s,s'})\) in scenarios \(s\) and \(s'\) are identical.

Variables for trial \((i^{s,s'}, j^{s,s'} + 1)\) should not be subject to NACs.

Lemma 1. NACs between \(s\) and \(s'\) for \(t < t_{\min}^{s,s'}\) and for the critical drug can be expressed using:

\[
X_{i^{s,s'}} \sum_{s' \in \mathcal{S}^{s,s'}_{t,s}} p_{s'} - \sum_{s' \in \mathcal{S}^{s,s'}_{t,s}} X_{i^{s,s'}} p_{s'} = 0, \quad \forall s, t > 1, (i, j) \in \mathbf{I} \mathbf{J}_{t,s}
\]

Property 5. Let \(S_t^l = \{s: t^{s,s'} < t, \forall s' \in \}, l \in \mathbf{L}\) be one of the subsets of scenarios that are indistinguishable at stage \(t\). If \(p_s > 0, \forall s \in S_t\), then NACs among scenarios in \(S_t^l\) can be enforced using a single equality.
Formulation Reduction and Tightening

Reduction in NACs

![Graph showing reduction in NACs](image)

Total constraints

![Graph showing total constraints](image)
Outline

- Introduction
- Theoretical Properties
- Solution Algorithms
- Extensions
- Applications
Infinite-horizon Approximations

\[\max ENPV = \sum_s p_s (R_{v,s} - Cst_s) \]

\[R_{v,s} = r_{i,s}^{\text{max}} - \gamma^D_i D_i - \gamma^L_i L_i \]

\[Cst_s = \sum_{i,j,t} c_{ij} c_d X_{ijts}, \quad \forall s \]

\[\max ENPV = \sum_s p_s (R_{v,s} - Cst_s + FR_{v,s}) \]

\[FR_{v,s} = \sum_{i \in S'} \sum_j rev_{i}^{\text{open}} f_{ij} Z_{ij|T|s} + \sum_{i \in S'} \sum_{j \in \{P1,P2\}} \sum_{t>T - \tau_j} rev_{i}^{\text{run}} f_{ij+1} X_{ijts}, \quad \forall s \]

Revenue from drugs *idle* at the end of horizon

Revenue from drugs being developed at the end of the horizon
Rolling Horizon with Relaxed Model

Algorithm

1. Relax all double inequality NACs for stages greater than stage, t^*
2. Solve the model for $T=\{1, 2, \ldots, T\}$; implement the solution for $t = t' \leq t^*$; the current solution defines the scenario tree; a realization of uncertainty defines a path in the tree leading to a node at stage t'.
3. For the path (node) of interest, formulate and solve the model with updated information and $T^{new}=\{t'+1, t'+2, \ldots, t'+T\}$

Remarks

1. Integrality gap of M is 3-4%;
2. Integrality gap of RM (after removal of NACs for $t > t^*$): 2-3%
3. Reduced model is easy to solve
4. Yields solutions that are *too good* (infeasible) for $t\in\{0, 1, \ldots, T\}$
5. But yields feasible (near) optimal solutions for $t\in\{0, \ldots, t'\}$
- Original Formulation (M): \(\max \{ cx: A^B x \leq b^B, A^* x \leq b^* \} \)
- Reduced Model (RM): \(\max \{ cx: A^B x \leq b^B \} \)
- We remove \textit{essential} constraints
- LP-relaxation of RM (LRM)
- (NAC) check: At each node add violated inequality NACs

\[
\begin{align*}
\text{max } c^T x \\
A^B x &\leq b^B \\
A^* x &\leq b^*
\end{align*}
\]

Essential constraints

\[
\begin{align*}
\text{LRM-Fractional} \\
\text{LRM-Infeasible} \\
\text{LRM-Fractional after NAC iterations} \\
\text{LRM-Integer} \\
\text{LRM-Integer} / \text{NAC Feasible}
\end{align*}
\]
Branch-and-cut Algorithm

Challenges and Approach

- **Integer solutions may be infeasible**
 - Deactivate heuristics (no good bounds available)
 - Modify bound updating
 - Check against removed NACs

- **Integer nodes can become fractional**
 - Continue branching from integer solutions

- **Standard search strategy inefficient**
 (no *early* good bounds; basis modified due to addition of NACs)
 - Combine best-first (depth<N) and local search

- **Expensive checking for NAC violation**
 - Hybrid cut checking strategy
 - Check at all nodes if node# < N (fewer cut additions)
 - Check only at integer later

Implemented using Xpress-Mosel in Xpress-IVE
Computational Results

Instance characteristics

<table>
<thead>
<tr>
<th>Instance</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7A</th>
<th>7B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drugs</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>$</td>
<td>I^\text{PI}</td>
<td>/</td>
<td>I^\text{PII}</td>
<td>/</td>
<td>I^\text{PIII}</td>
</tr>
<tr>
<td>Scenarios</td>
<td>144</td>
<td>288</td>
<td>864</td>
<td>2,304</td>
<td>3,456</td>
</tr>
<tr>
<td>Stages</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Constraint Reductions

![Graph showing constraint reductions](image)

Computational results

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7A</th>
<th>7B</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0: Properties 1-2</td>
<td>643</td>
<td>927</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1: Properties 1-4</td>
<td>448</td>
<td>710</td>
<td>19,826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2: Properties 1-5</td>
<td>419</td>
<td>667</td>
<td>16,429</td>
<td>27,806</td>
<td></td>
</tr>
<tr>
<td>B&C algorithm</td>
<td>323</td>
<td>438</td>
<td>2,781</td>
<td>11,660</td>
<td>28,019</td>
</tr>
</tbody>
</table>

Resource limit: 300,000 CPU sec
Endogenous Uncertainty Observation

Problems with sequential decision-making and endogenous uncertainty observation

- Oilfield planning
- Energy planning for new technologies (learning curves for new technology costs)
- Online fleet management and vehicle routing (decisions to accept customer, locate idle fleet)
- Airline booking systems (allocation of business/economy seats)

Results applicable to a wide range of problems

- **Variable reduction**: SP models where scenarios become distinguishable by a single decision
- **Property 1**: All SP models; effective for endogenous uncertainty observation
- **Property 2**: SP models with *sequential* decision making
- **Property 3**: SP models with timing constraints
- **Property 4**: SP models with *sequential* decision making
- **Property 5**: All SP models with binary decision variables
- **Branch-and-cut**: All SP models with endogenous uncertainty observation
Outline

- Introduction
- Theoretical Properties
- Solution Algorithms
- Extensions
- Applications
Integrated Clinical Trial and Resource Planning

Long planning horizon
- Outlicensing of drugs successfully passing PI or PII trials
- Expand/contract resources
- Outsourcing (at higher cost)

New Variables:
- \(W_{ijt} = 1 \) if drug \(i \) is outsourced at \(t \) after completing trial \(j-1 \)
- \(R^E_{kts} \): Resource expansion/contraction
- \(R^O_{kts} \): Outsourcing

Idle Drug:
\[
Z_{ijt} = Z_{ij0} + \sum_{t'=1}^{t-\tau_{ijt}} X_{i,j-1,t',s} - \sum_{t'=1}^{t} (X_{ij't'} + W_{ij't'}), \quad \forall i, j, t, s
\]

Sequencing:
\[
\sum_{t' \leq t} X_{ij't'} \leq Y_{i,j-1,t,s}, \quad \forall i, j \in \{PI, PII, PIII\}, t, s
\]

Resource constraints:
\[
\sum_{i} \sum_{j} \sum_{t>t'=-\tau_{ij}+1} \rho_{ijk} X_{ij't'} \leq \rho_{r}^{max}, \quad \forall r, t, s
\]
Proposition 6. If variables X_{ijts} and R_{rts} are subject to NACs, then outsourcing decisions R^0_{rts} for $r \in \mathbb{R}^k$ satisfy nonanticipativity in an optimal solution.

Proposition 7. If variables X_{ijts} and R_{rts} are subject to NACs, then expansion/contraction decisions R^0_{rts} satisfy non-anticipativity in an optimal solution.

Proposition 8. For consumable resources, if variables X_{ijts} are subject to NACs, and $c_n^E > c_{n'}^E, \forall t' > t$, variables R_{rts} satisfy non-anticipativity in an optimal solution.
General Precedences and Shared Tasks

- Process development and capacity planning in parallel with drug development
- Manufacturing facilities, shared among many drugs, built in parallel

General sequencing constraint (modified):

\[
\sum_{t'=1}^{[T]} (|T| - t') X_{ij}'s \leq \sum_{t'=1}^{[T]-\tau_{ik}} (|T| - t' - \tau_{ik}) X_{iks}'s, \quad \forall i, j, k, s \mid (i, k) \in P_{ij}
\]

- Allows successor tasks to remain idle throughout the horizon
- Fewer constraints than standard RCPSP sequencing constraints
- Less tight but computationally equivalent if not better
Other Extensions

- **Probability interdependencies**
 - Results from a clinical trial provide information that can be used in the future
 - Clinical trials are *modified* after results become available
 - Probability of success depends on the order in which drugs are developed
 - MSSP not suited to address this problem
 - Two drugs based on similar compounds/chemistry
 - If one trial fails it is likely that the other will also fail
 - Interdependency given as conditional probability; order of trials is not important
 - Scenario probabilities (modified) can be calculated prior to optimization

- **Other interdependencies**
 - Resource use: reduced resource requirements if two tasks are performed in parallel
 - Revenue: Competitive (complementary) products leading to lower (higher) revenue

- **Risk management**
 - Downside risk
 - Probabilistic constraints
 - Value-at-risk (VaR) and conditional-value-at-risk (CVaR)
 - *Hard* to model because scenarios are not preranked
 - Developed MIP formulation and some tightening constraints
 - Can model VAR/CVaR even if not in the objective
Outline

- Introduction
- Theoretical Properties
- Solution Algorithms
- Extensions
- Applications
Example 1

- 3 drugs
- 2 resource types;
- 3-year horizon divided into 12 3-month periods

Decision tree at optimal solution

Gantt charts and resource profiles

Probability density and cumulative distribution of NPV

- Scenarios

- Stages (3-month time periods)

- Decision tree at optimal solution

- Gantt charts and resource profiles

- Probability density and cumulative distribution of NPV
Example 2

- 4 drugs entering PI
- 4-year horizon divided into 8 6-month periods
- Outlicensing

No risk management

No risk constraints
ENPV = $366 M
\(p(\text{NPV}<0) = 40\% \)
Risk = $10 M

Probabilistic:

\(p(\text{NPV}<0) \leq 20\% \)
ENPV = $322 M
\(p(\text{NPV}<0) = 20\% \)
Risk = $10 M

Downside risk:

Risk \(\leq $6 \) M
ENPV = $221 M
\(p(\text{NPV}<0) = 50\% \)
Risk = $6 M

Outlicense at least one drug
Outlicense at least one drug or stop development
Example 3

- Four drugs have to undergo three clinical trials (PI, PII, PIII)
- Multi-stage SP formulation: 8 stages, 256 scenarios

Risk Management Approaches

1. Risk neutral
2. Probabilistic constraints
 \[p(NPV < 0) \leq 0.2 \]
3. Downside risk
 \[\sum_s p_s NPV \leq 35M \]
4. Conditional value-at-risk, \(a = 0.05 \)
5. Value-at-risk, \(a = 0.05 \)
Conclusions

- **Modeling methods**
 - No auxiliary binaries to model NACs
 - Resource planning; general precedence constraints
 - Task interdependencies
 - Risk-management methods

- **Theoretical properties for NACs**

- **Novel branch-and-cut algorithm**

- **Methods applicable to a wide range of problems**
 - General stochastic programming problems
 - Problems under endogenous uncertainty observation
 - *Sequential* decision making