A Stochastic Integer Programming Extended Attack Response Model for Large-Scale Wildfires

Michelle McGaha Alvarado
Lewis Ntaimo

Department of Industrial & Systems Engineering
Texas A&M University
College Station, TX, USA

July 12, 2013

Collaborators: NSF Grant: AGS - 0940134; Xiaolin Hu and Fan Bai of Georgia State University (GSU), James Naturo of Oak Ridge National Laboratory (ORNL), Ming Xue and Yang Hong of University of Oklahoma (OU), and Curt Stripling and Tom Spencer of Texas A&M Forest Service (TFS)

US Dept. of Education, Grant Number: P200A060241, GAANN
Agenda

Problem Setting

Literature Review

Methodology
 Simulation-Optimization Approach
 SMIP Optimization Model

Example Illustration

Summary
Wildfire Statistics

There is an increasing trend in the number and size of large-scale wildfires

- 76,000 wildfires in the U.S. each year from 2001 to 2011, which burned 7 million acres (2.8 million ha) (National Interagency Fire Center)

- 2011 Texas Wildfire Season (November 15, 2010-October 31, 2011):
 - 31,453 fires
 - 4.011 million acres burned (1.65 million ha)
 - 2,947 homes lost (39,413 saved)
 - 12 fatalities

- Bastrop, TX, USA
 - Sept. 4, 2011 - Sept. 30, 2011
 - Cause: electrical fire
 - 1669 homes lost
 - 34,068 acres burned (13,790 ha)
Introduction

- *Initial attack* are the actions taken by the first resources to arrive at a wildfire to protect lives and property, and prevent further extension of the fire.

- *Extended wildfire response planning* follows if the fires escape initial attack.

- *Large-scale wildfires* are those that have escaped initial attack due to extreme burning conditions.

Figure: A wildfire in Yarnell, Arizona, USA killed 19 firefighters on Sunday, June 30, 2013.
A Stochastic Programming Extended Attack Response Model for Large-Scale Wildfires
Introduction
Problem Setting

Introduction

- We consider *indirect attack*, a method of *fire suppression* that works to contain wildfires by establishing control lines away from a fire that contain no combustible materials

- *Firefighting resources* (e.g., bulldozers, air tankers, plows, personnel, etc.) are used to establish control lines around a wildfire

- A *dispatch decision* is the assignment of a firefighting resource to a location at a specific time.

Figure: Bulldozer
Introduction

- Weather conditions can heavily impact fire spread.

Where should you dispatch resources?

Wind Speed: 19.6 m/s
Direction: 67° (azimuth)

Wind Speed: 19.5 m/s
Direction: 48°

Wind Speed: 5.4 m/s
Direction: 348°

Scenario 1
Vegetation
Burned
Burning

Scenario 2

Scenario 3
Initial fire footprint
Wildfire Resource Scheduling Challenges

Research Goal:
Determine optimal location and timing of firefighting resources to an escaped large-scale wildfire under uncertain weather conditions
Wildfire Resource Scheduling Challenges

Research Goal:
Determine optimal location and timing of firefighting resources to an escaped large-scale wildfire under uncertain weather conditions

Challenges:

► Wildfire resource safety concerns

► Resource travel time

► Predicting fire growth

► Uncertain weather conditions influence fire growth predictions

► Dispatch decisions also impact fire behavior predictions
Literature Review

<table>
<thead>
<tr>
<th>Fire Modeling</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Finney, 1998)</td>
<td>FARSITE: Fire area simulator.</td>
</tr>
<tr>
<td></td>
<td>(Andrews et al., 2005)</td>
<td>BehavePlus fire modeling system.</td>
</tr>
<tr>
<td></td>
<td>(Finney, 2006)</td>
<td>FlamMap fire modeling capabilities.</td>
</tr>
<tr>
<td></td>
<td>(Ntaimo et al., 2008)</td>
<td>DEVS-FIRE Integrated simulation of wildfire spread and containment. Designed to be integrated with stochastic optimization models.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fire Management and Initial Attack</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Hof et al., 2000)</td>
<td>Investigate fire management through spatial optimization to reduce fuel loads and protect valuable assets.</td>
</tr>
<tr>
<td></td>
<td>(Wei et al., 2008)</td>
<td>MIP model to locate fuel treatment over spatial landscape to minimize expected fire losses under budget constraints and domino effects for suppression.</td>
</tr>
<tr>
<td></td>
<td>(Hu and Ntaimo, 2009)</td>
<td>Used a two-stage SMIP for initial deployment to test firefighting tactics.</td>
</tr>
<tr>
<td></td>
<td>(Ntaimo et al., 2012)</td>
<td>SMIP for wildfire initial attack planning; goal is to contain as many fires as possible while minimizing fixed rental and travel costs and expected future operational costs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Large Scale Wildfires and Spatial Opt.</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Mees and Strauss, 1992)</td>
<td>Allocating resources to large wildfires with stochastic production rates.</td>
</tr>
<tr>
<td></td>
<td>(Finney et al., 2009)</td>
<td>Model probability of containment of large wildfires and determine what factors influence successful containment.</td>
</tr>
<tr>
<td></td>
<td>(Thompson et al., 2011)</td>
<td>Large-scale wildfire risk assessment.</td>
</tr>
<tr>
<td></td>
<td>(Calkin et al., 2011)</td>
<td>Real-time risk assessment tool for decision-making of large-scale wildfires.</td>
</tr>
</tbody>
</table>
Simulation-Optimization Approach

Fire behavior simulation (eg. DEVS-FIRE, FlamMap)
- Generates fire growth scenarios based on stochastic weather data

Stochastic optimization
- Uses fire growth scenarios to make dispatch decisions using a stochastic mixed-integer program (SMIP)

Fire behavior and fire suppression simulation
- Assesses dispatch decisions for the real weather conditions

Figure: Optimization and simulation relationship
Methodology

Simulation-Optimization Approach

Figure: Optimization and simulation relationship
Texas Wildfire Risk Assessment (TWRA) System

- **Fire Response Accessibility Index (FRAI):** A relative measure of how long it would take initial attack resources to drive from their resource location to each fire area, index range 1 (easily accessible) to 6 (inaccessible).

- **Dozer Operability Rating (DOR):** A measure of the difficulty to operate equipment and resources for suppressing fires, index range 1 (easily operable) to 9 (inoperable).
Scenarios

- Fire behavior simulation model (eg. DEVS-FIRE, FlamMap) simulates fire behavior each possible weather condition
- A *scenario* is a realization of fire behavior defined by:
 - fire arrival time to a cell
 - fire rate of spread
 - spread direction
 - fireline intensity

<table>
<thead>
<tr>
<th>Wind Speed</th>
<th>Direction (azimuth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.6 m/s</td>
<td>67°</td>
</tr>
<tr>
<td>19.5 m/s</td>
<td>48°</td>
</tr>
<tr>
<td>5.4 m/s</td>
<td>348°</td>
</tr>
</tbody>
</table>

A Stochastic Programming Extended Attack Response Model for Large-Scale Wildfires
Multi-period Two-stage SMIP Optimization Model

- Two-stage SMIP
 - binary first-stage decisions
 - fixed recourse, random technology matrix
 - continuous second-stage decisions

- Decisions
 - First-stage:
 - Which cells to target for suppression
 - Sequence each resource suppresses the targeted cells
 - Second-stage:
 - Unfinished line construction (distance) in each cell

- Objective
 - First-stage:
 - Identify cells that are easily accessible (low FRAI)
 - Identify cells that are easily operable (low DOR)
 - Second-stage:
 - Minimize unfinished line construction in each cell
SMIP Model First-stage Decision Variables

For each decision period \(t = 0, 2, \ldots, T - 1 \)

\[
\begin{align*}
 x^t_j : & \quad x^t_j = 1 \text{ if target cell } j \text{ is scheduled for suppression in period } t, \ x^t_j = 0 \text{ otherwise} \\
 z^{t}_{r(k)ij} : & \quad y^{t}_{r(k)ij} = 1 \text{ if resource } r(k) \text{ is assigned to suppress cell } j \\
 & \quad \text{in sequence slot } i \text{ during period } t, \ z^{t}_{r(k)ij} = 0 \text{ otherwise}
\end{align*}
\]

Figure: Variable \(y \) selects a sequence \((i = 0, \ldots, \bar{I})\) of cells \(j \) for each resource \(r \).
SMIP Model: First-stage

For each decision period \(t = 0, 2, ..., T - 1 \)

Minimize

\[
\sum_{r(k) \in R(k) \setminus \bar{I}_t} \sum_{i \in \{1, ..., n_{r(k)} \}} \sum_{j \in J_{r(k)}} w_{ij}^t (DOR_j + FRAI_{r,k}) z_{r(k)}^{t,ij} + E[f(x, z, \bar{\omega})]
\]

\[
\sum_{j \in J_t} x_j^t \leq u^t
\]

\[
\sum_{r(k) \in R(j) \setminus \bar{J}_t} \sum_{i \in I_t} z_{r(k)}^{t,ij} \leq m_j x_j^t, \quad \forall j \in J^t
\]

\[
z_{r(k)}^{t,ij} - x_j^t \leq 0, \quad \forall r(k) \in R(k)^t, \forall i \in I^t, \forall j \in J^t
\]

\[
x_j^t - \sum_{r(k) \in R(j) \setminus \bar{J}_t} \sum_{i \in I_t} z_{r(k)}^{t,ij} \leq 0, \quad \forall j \in J^t
\]

\[
\sum_{i \in I_t} z_{r(k)}^{t,ij} \leq 1, \quad \forall r(k) \in R(k)^t, \forall j \in J_{r(k)}^t
\]

\[
z_{r(k)}^{t,0j} = 1
\]

\[
\sum_{j \in N_{j} \setminus J_{r(k)}^t} z_{r(k)}^{t,(i+1)j} - z_{r(k)}^{t,ij} \geq 0
\]

\[
x_j^t \in \{0, 1\}, \quad \forall j \in J^t
\]

\[
z_{r(k)}^{t,ij} \in \{0, 1\}, \quad \forall r(k) \in R(k)^t, \forall i \in I^t \setminus \bar{I}_t, \forall j \in J_{r(k)}^t
\]
SMIP Model: First-stage Constraints for Decision Period t

(1) Upperbound u^t on the number of cells can be selected for suppression in decision period t

(2) Upperbound m_j resources can be assigned to cell j in decision period t

(3) A resource cannot be assigned to a cell unless the cell has been selected for suppression

(4) Each cell selected for suppression must have at least one resource deployed (assigned) to it

(5) Each cell j can only be assigned to resource $r(k)$ once in the sequence

(6) Initialize the resource’s initial location in the sequence

(7) The next cell in the sequence for resource $r(k)$ should be a neighbor cell and be in set $J^t_{r(k)}$

(8-9) Binary restrictions
SMIP Model: Second-stage Decision Variables

For each decision period $t = 0, 2, ..., T - 1$

$y^t_j(\omega)$: amount of line construction remaining in cell j at the end of period t in scenario ω
SMIP Model: Second-stage Objective for Decision Period t

$$f(x, z, \omega) = \text{Minimize} \sum_{j \in J^t} p_j \cdot y_j^t(\omega)$$

$$-y_j^t(\omega) \leq \sum_{r(k) \in \{r(k) | r(k) \in R(k)^t, j \in J^t_{r(k)}\}} \sum_{i \in I^t} \alpha_{r(k)j}^t \pi_{r(k)j}^t(\omega) z_{r(k)ij}^t - l_j^t \quad \forall j \in J^t \quad (1)$$

$$y_j^t(\omega) \geq 0 \quad \forall j \in J^t \quad (2)$$

The sum of the line construction efforts of resources $r(k)$ deployed to cell j must meet or exceed the line construction required for cell j selected for suppression

Non-negativity constraints
Illustration

- 4000 cell example (30m x 30m)
- 2 weather scenarios
- 10 resources
 - line construction is 0.35 km/hr
- 1 cell initially on fire
- Decisions made every hour

Example SMIP solved using CPLEX
Illustration

Figure: Fire spread after 6 hours without suppression
Illustration: $t=0$

Figure: Initial fire and resource locations
Illustration: $t = 0$

Figure: $t=0$: Scenario 1 predictions for the next hour

Figure: $t=0$: Scenario 2 predictions for the next hour
Illustration: $t=1$

Figure: Suppression and Fire Spread at $t=1$ (1 hour) if scenario 2 was realized
Illustration: $t = 0$

Figure: $t=0$: Scenario 1 predictions for the next hour

Figure: $t=0$: Scenario 2 predictions for the next hour
Next Steps

- Improve model to complete containment line
- Validate with the Rockhouse fire data
 - April 9-May 6, 2011
 - 314,444 acres burned (127,000 ha)
- Analysis on decision frequency
- Protection vs. suppression of valuable resources
Wildfires take lives, burn structures, and destroy natural habitats

Developed a simulation and optimization approach to large-scale wildfire extended-attack planning

Formulation of a SMIP for wildfire extended attack planning

Next steps are to improve the SMIP model and evaluate using real Texas wildfire data
Questions?

Thank You!
michelle.alvarado@neo.tamu.edu
Selected References

- Science Daily www.sciencedaily.com
- Texas Forest Service txforestservice.tamu.edu/
- Wildfire Today www.wildfiredtoday.com