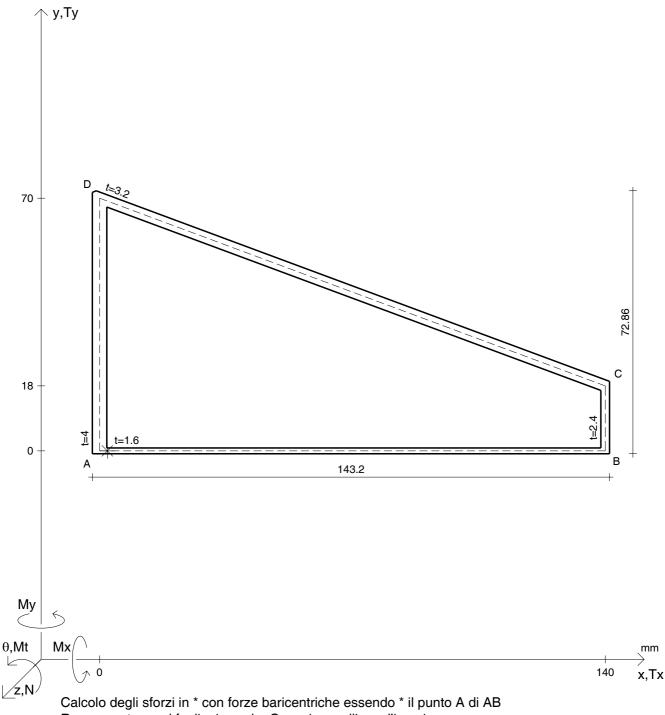

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 54400 N	M _×	= -610000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1020000 Nmm	M_{v}	= 1280000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$,) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

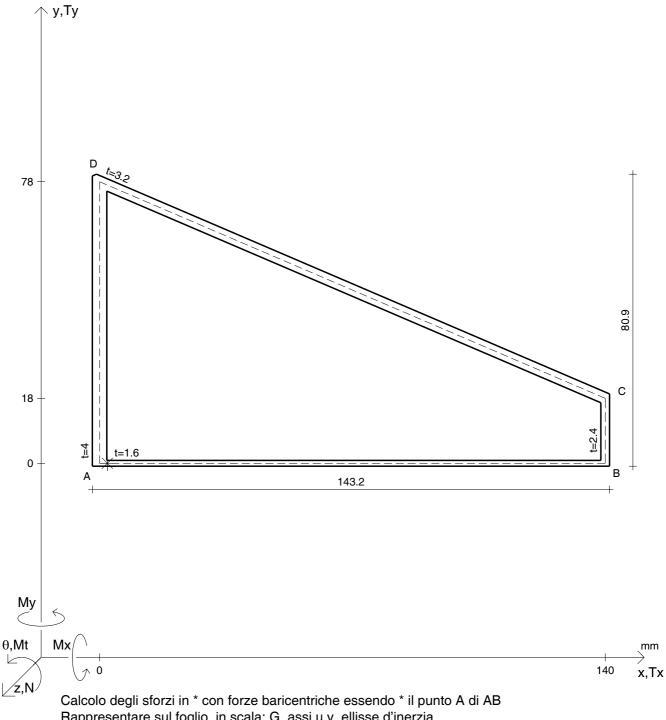

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 62600 N	M _×	= -520000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1240000 Nmm	M_{v}	= 1480000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

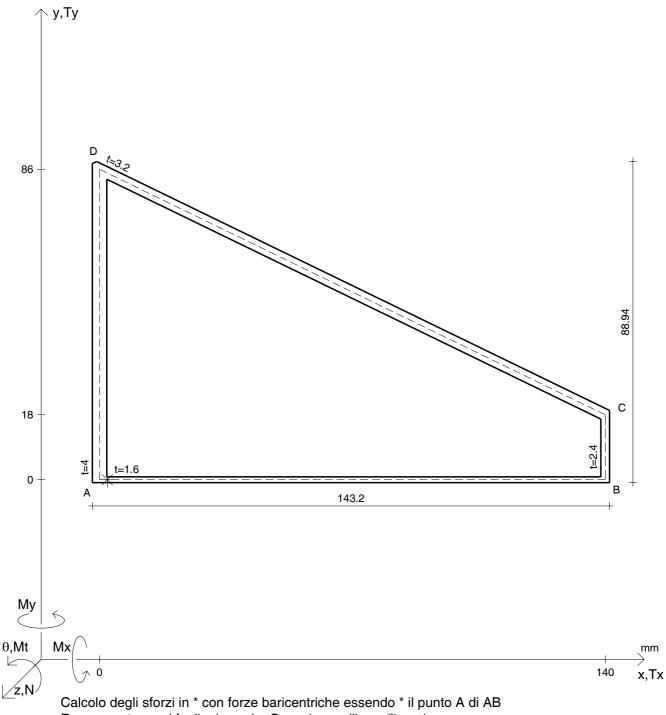

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 71400 N	M _x	= -665000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1010000 Nmm	M_{v}	= 1690000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

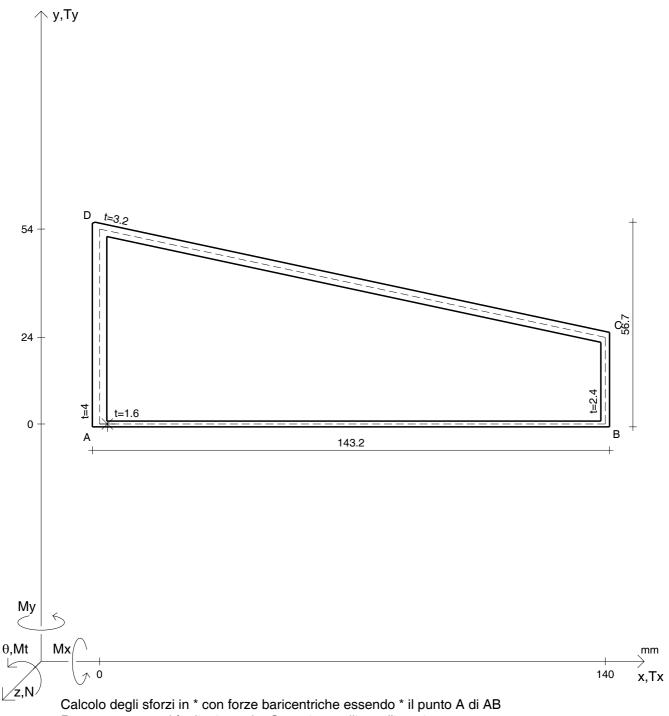

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 54900 N	M _×	= -835000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$				
M_t	= 1230000 Nmm	$M_{v}^{}$	= 1930000 Nmm	E	= 200000 N/mm ²						
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=				
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{ren} =				
u_o	=	J_v	=	σ	=	θ_{t}	=				
V_{o}	=	α	=	τ	=	r_u	=				
Α	=	J_t	=	σ_{I}	=	r_{v}	=				
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=				
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=						
	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07										

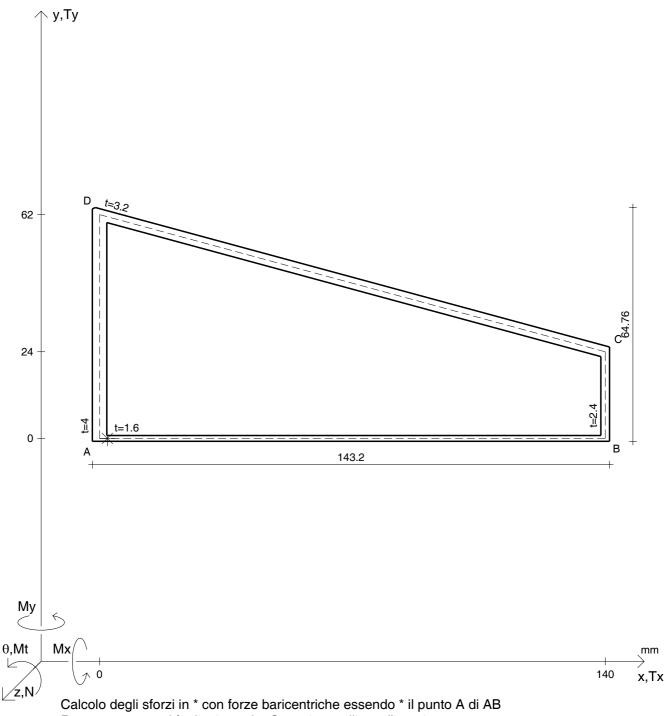

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 63800 N	M _x	= -1030000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1480000 Nmm	M_{v}	= 1480000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

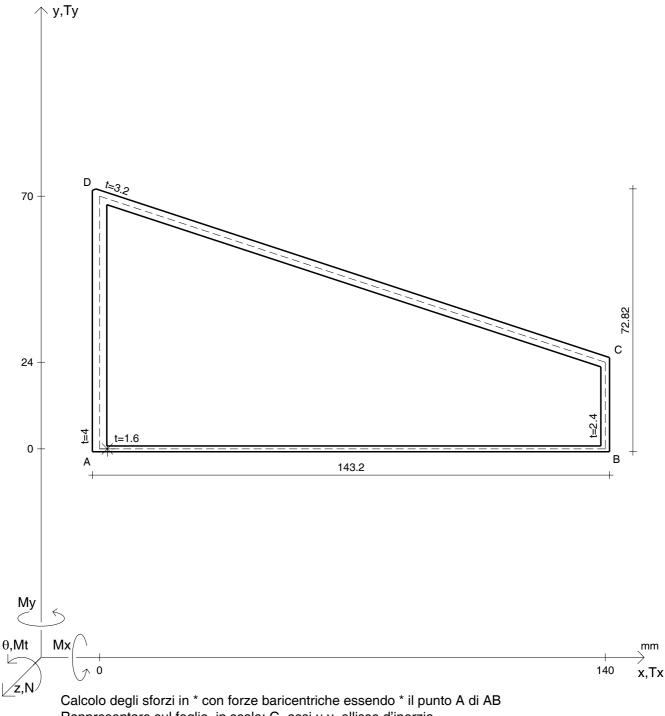

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 61500 N	M _x	= -506000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 75000 N/mm ²
M_t	= 1230000 Nmm	M_{v}	= 1560000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

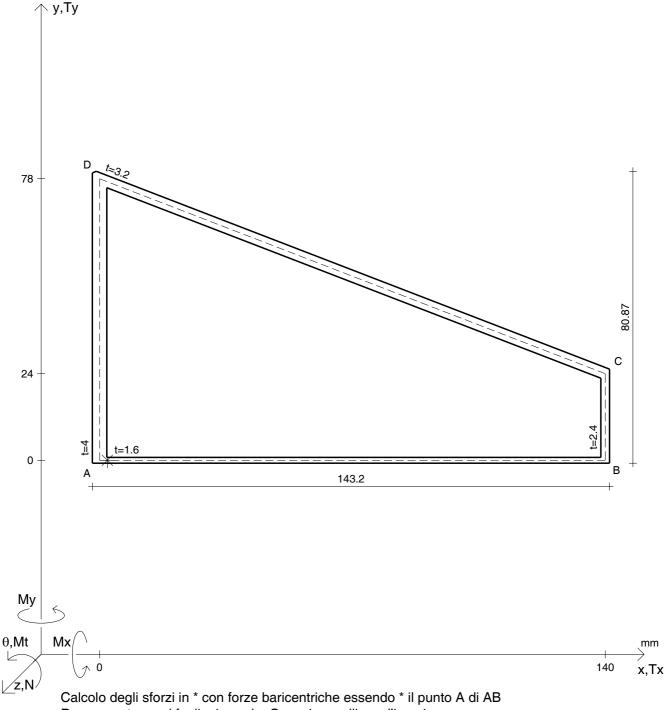

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 69900 N	M _×	= -639000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 1000000 Nmm	M_{v}	= 1770000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

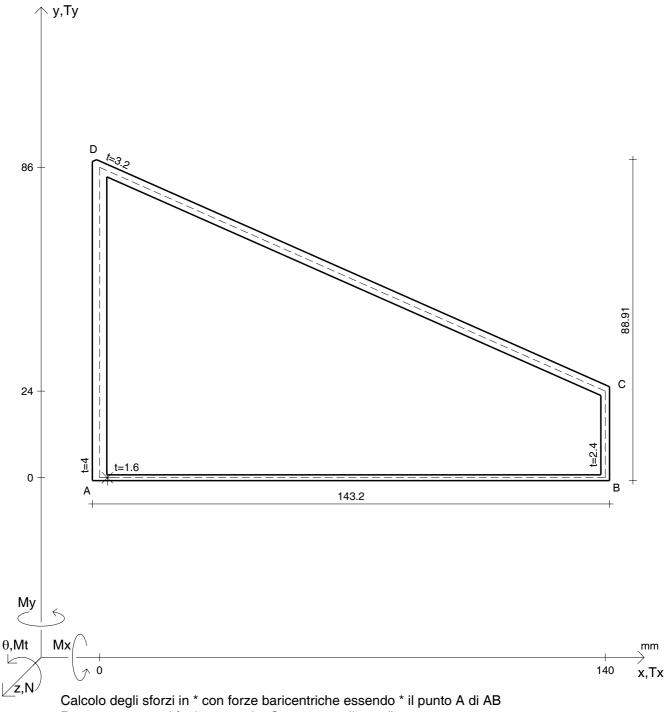

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 53600 N	M _x	= -796000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1220000 Nmm	M_{v}	= 2000000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$,) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

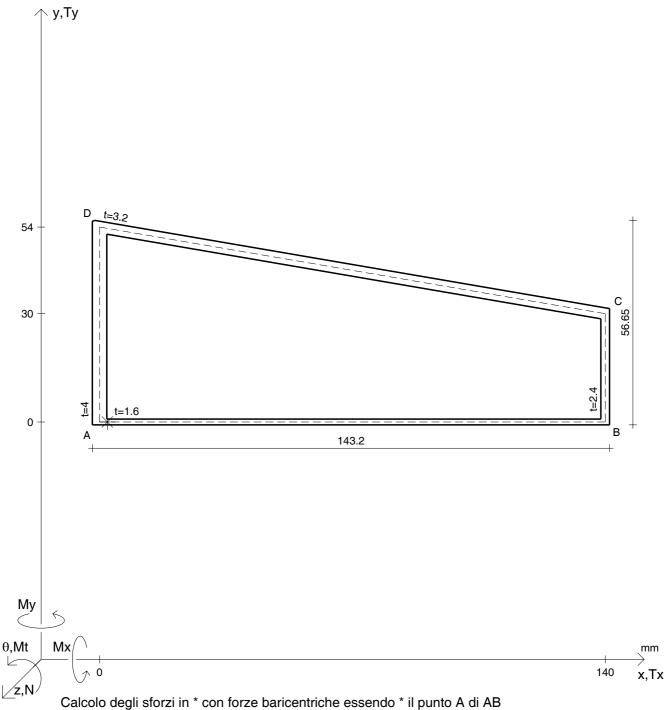

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 62200 N	M _x	= -979000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 75000 N/mm ²
M_t	= 1460000 Nmm	M_{v}	= 1520000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

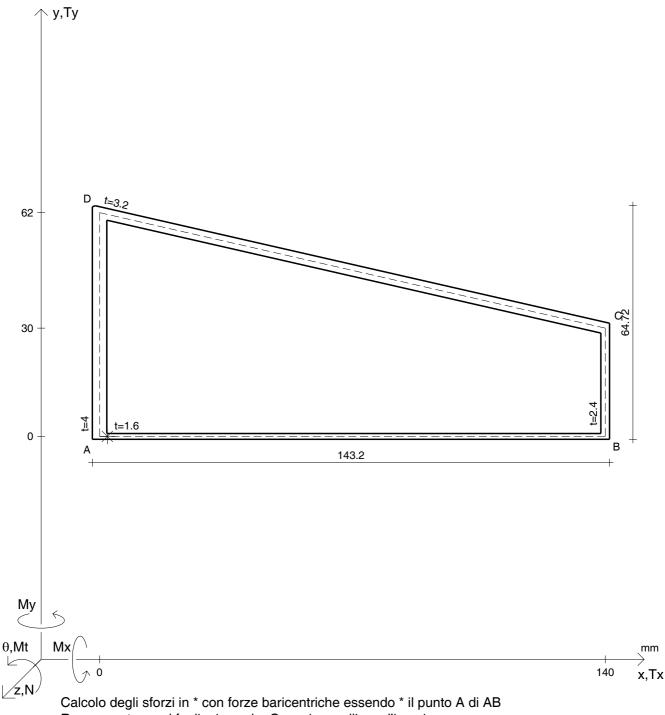

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 71400 N	M _x	= -809000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1720000 Nmm	M_{v}	= 1760000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

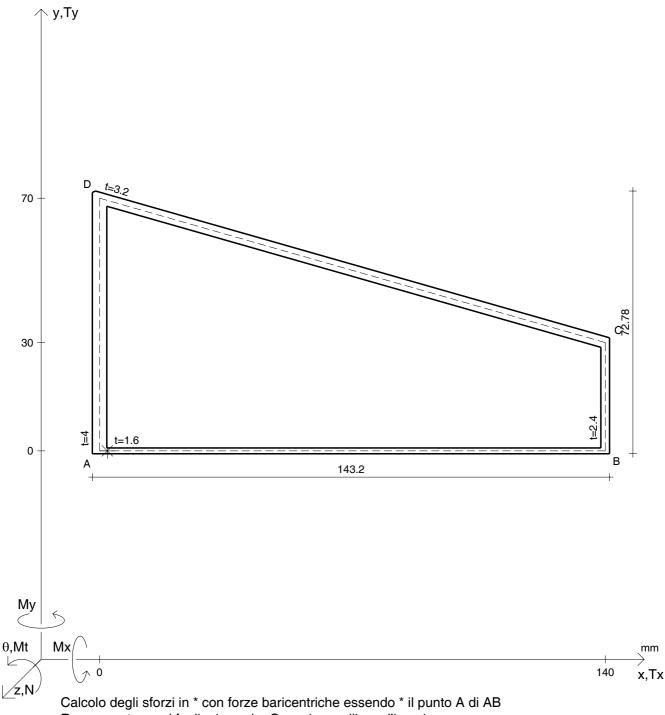

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 69100 N	M _x	= -637000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 994000 Nmm	M_{v}	= 1840000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

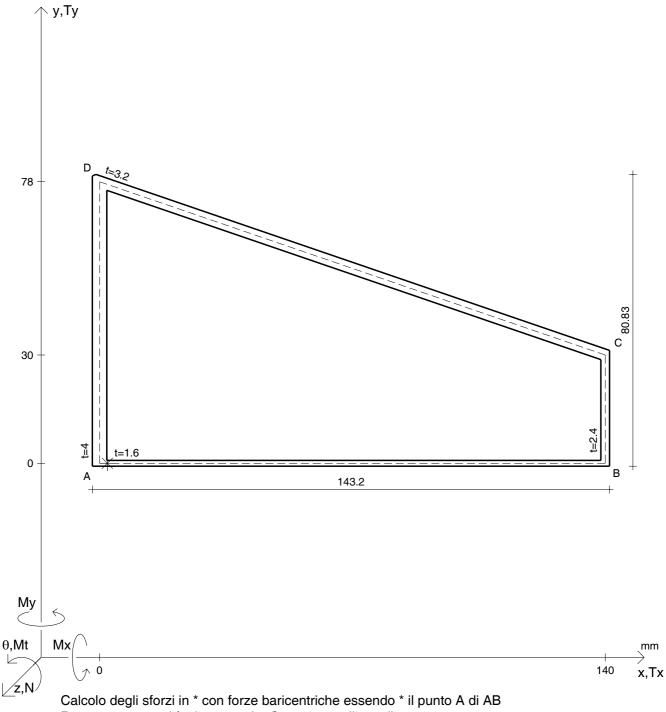

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 52800 N	M _×	= -782000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1210000 Nmm	M_{v}	= 2050000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

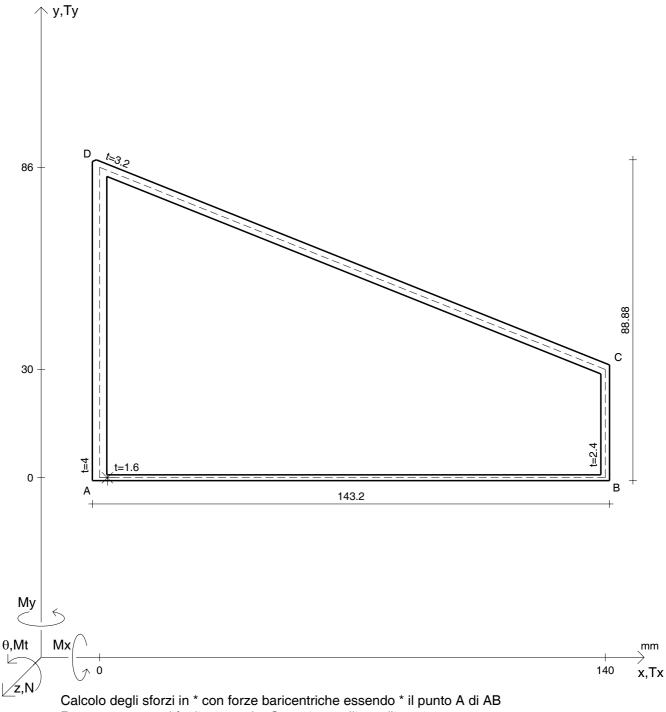

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 61200 N	$M_{x} = -952000 \text{ Nmm}$	$\sigma_a = 210 \text{ N/mm}^2$	$G = 75000 \text{ N/mm}^2$
M_t	= 1450000 Nmm	$M_{v} = 1550000 \text{ Nmm}$	$E^{n} = 200000 \text{ N/mm}^{2}$	
\mathbf{x}_{G}	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	$J_u =$	$\tau(M_t) =$	$\sigma_{\rm st.ven} =$
u_o	=	$J_v =$	σ =	$\Theta_{t} =$
V_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_{xx}	=	$\sigma(N) =$	$\sigma_{II} =$	r _o =
J_{yy}	=	$\sigma(M_x)=$	$\sigma_{\text{tresca}}^{-}$ =	

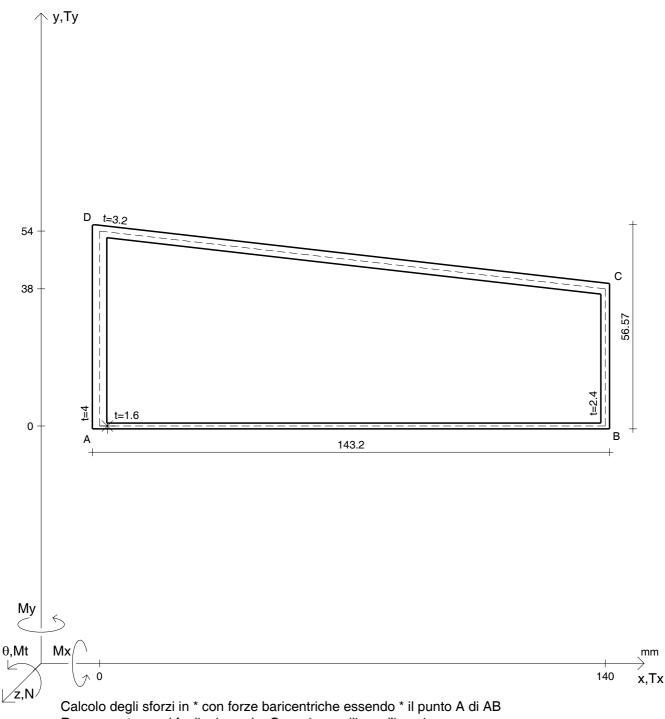

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 70100 N	$M_{x} = -781000 \text{N}$	$V_{a} = 210 \text{ N/mm}^2$	$G = 75000 \text{ N/mm}^2$
M_t	= 1710000 Nmm	$M_v = 1780000$		
x_{G}	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	$J_u =$	$\tau(M_t) =$	$\sigma_{st.ven}$ =
u_o	=	$J_v =$	σ =	$\theta_{t} =$
V_{o}	=	$\alpha =$	τ =	r _u =
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_xx	=	$\sigma(N) =$	$\sigma_{II} =$	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	

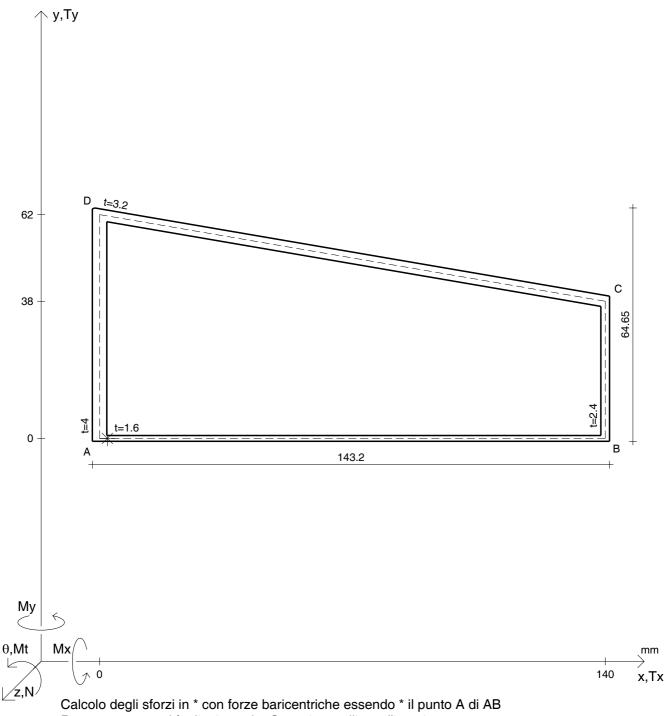

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 79600 N	M _x	= -967000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
M_t	= 1360000 Nmm	M_{v}	= 2020000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}			

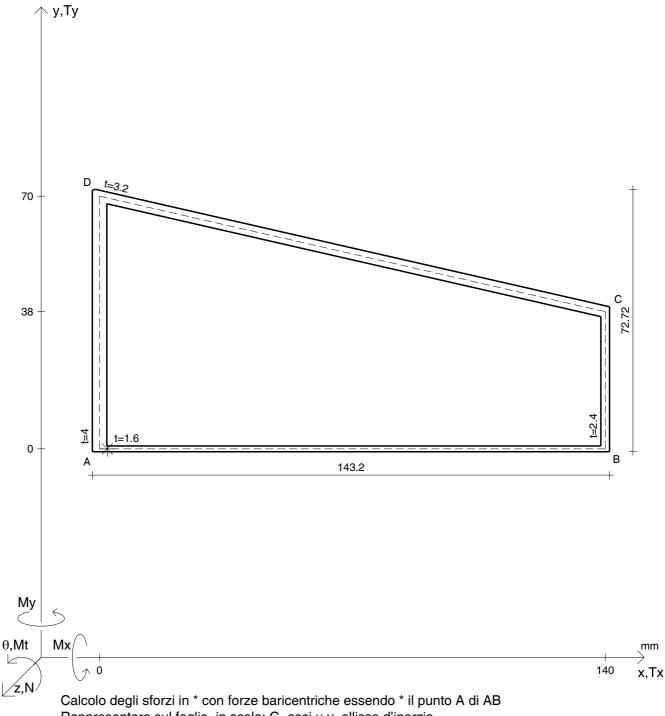

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 52500 N	$M_{x} = -825000 \text{ Nmm}$	$\sigma_a = 210 \text{ N/mm}^2$	$G = 75000 \text{ N/mm}^2$
M_t	= 1230000 Nmm	$M_{v} = 2210000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$	
x_{G}	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	$J_u =$	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =
u_o	=	$J_v =$	σ =	$\theta_{t} =$
V_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_xx	=	$\sigma(N) =$	$\sigma_{II} =$	r _o =
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	

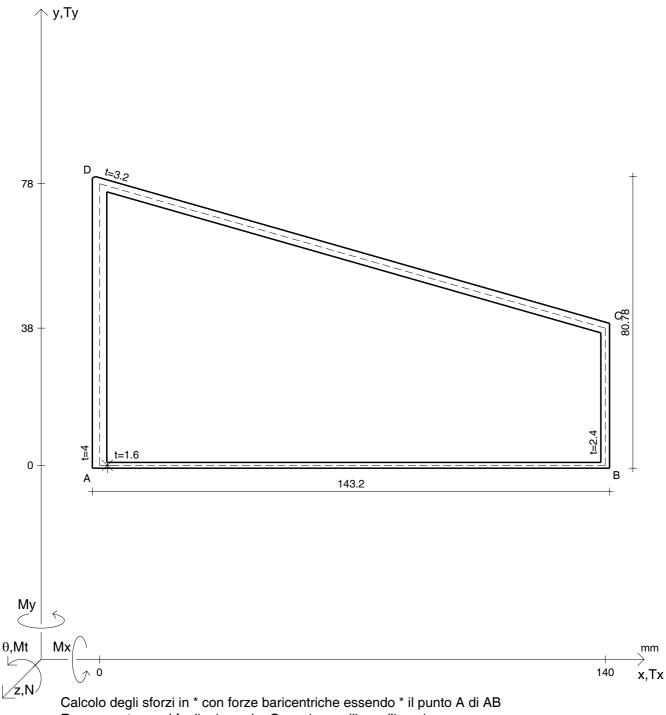

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 60700 N	M _x	= -982000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1470000 Nmm	M_{v}	= 1650000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

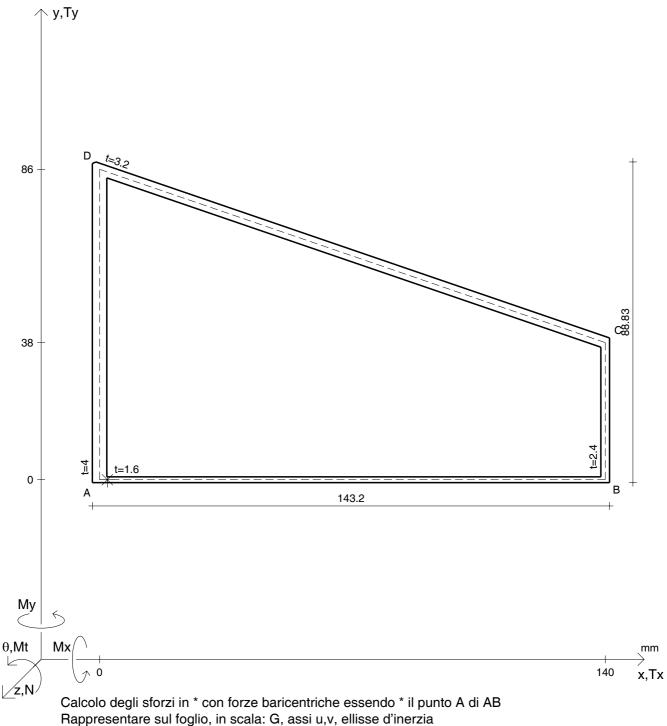

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 69400 N	M _×	= -792000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²		
M_t	= 1740000 Nmm	M_{v}	= 1870000 Nmm		$= 200000 \text{ N/mm}^2$				
x_{G}	=	J_{xy}	=	σ(M	<i>y</i> ·	σ_{mis}	ses=		
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{/en} =		
u_o	=	J_v	=	σ	=	θ_{t}	=		
V_{o}	=	α	=	τ	=	r_u	=		
Α	=	J_t	=	σ_{l}	=	r_{v}	=		
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=		
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07								

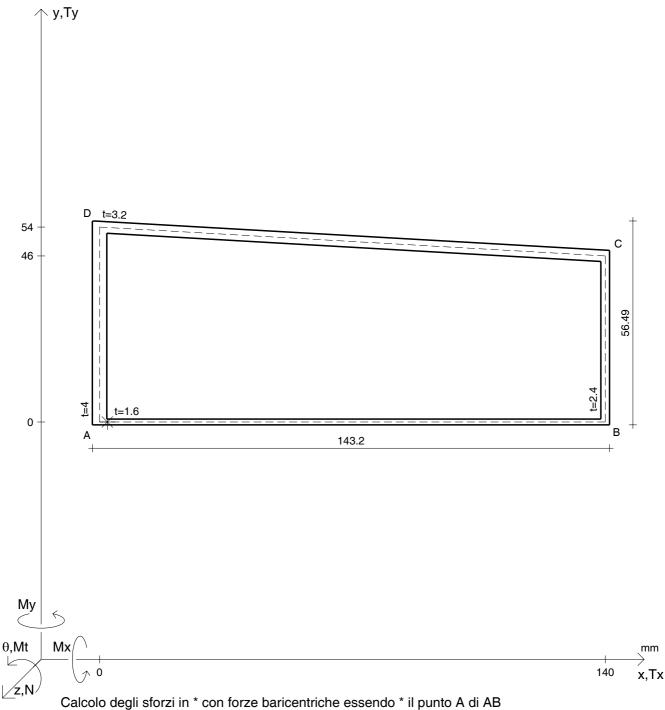

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 78600 N	M _×	= -969000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 1380000 Nmm	M_{v}	= 2100000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M)$,) =	$\sigma_{st.v}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

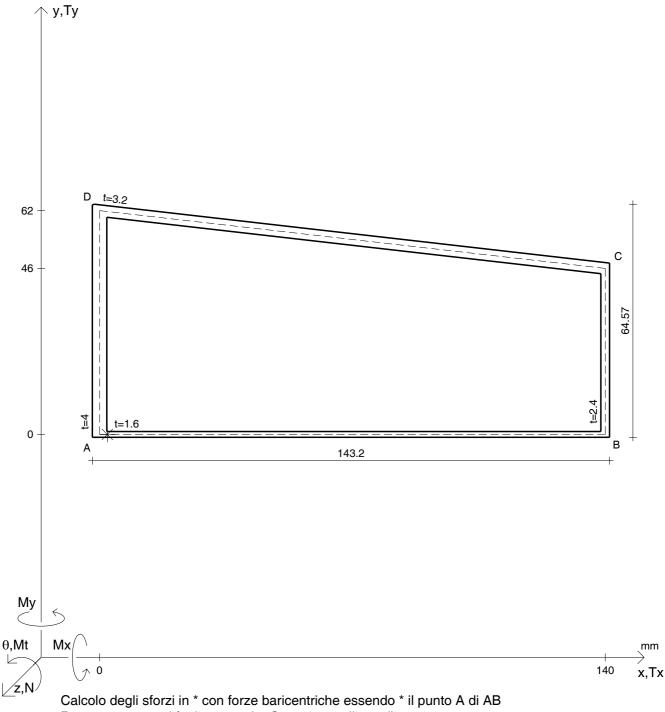

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 60100 N	M _×	= -1170000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 1640000 Nmm	M_{v}	= 2350000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

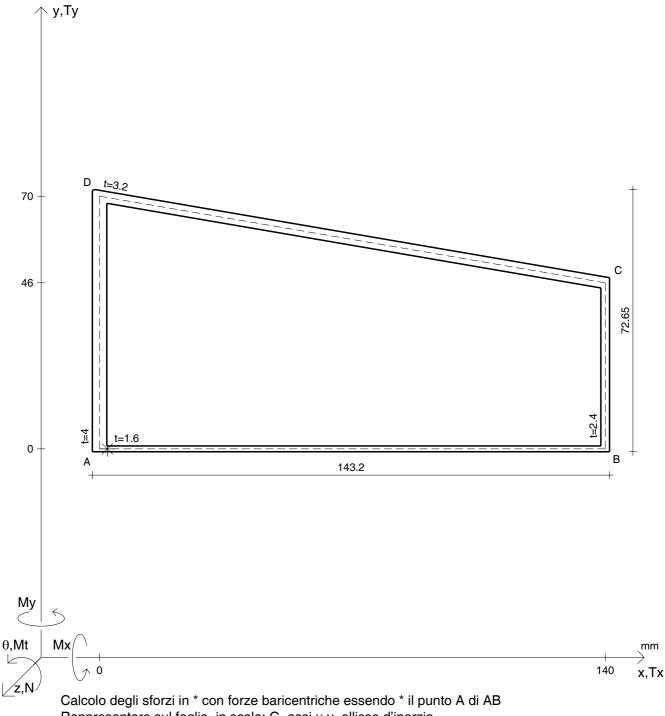

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens tangenziali

	i acollativo. ia	hhiese	mare randamento den	C (CI)	S. langenzian.		_
Ν	= 60000 N	M_{x}	= -1050000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1480000 Nmm	M_v	= 1790000 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	J_{xy}	=	σ(M,	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{vv}	=	$\sigma(M_x)$	=	σ_{tres}	=		

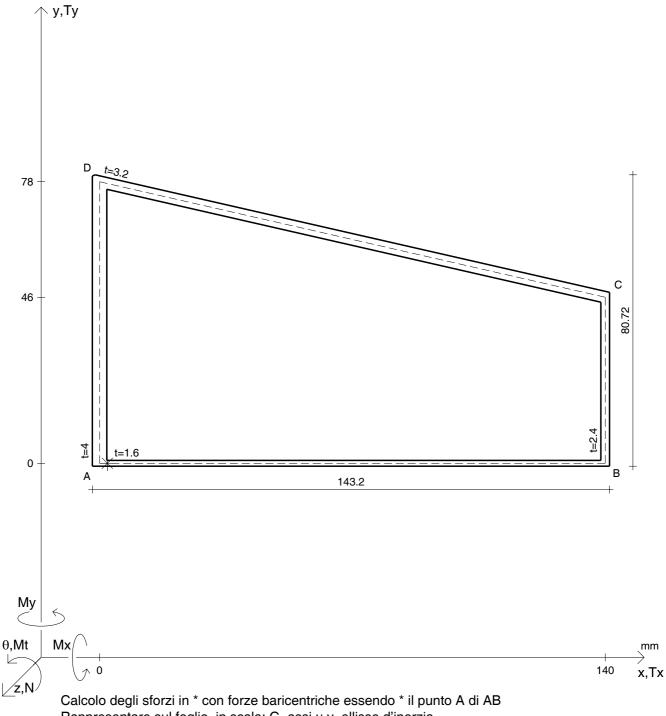

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 68700 N	M _x	= -830000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1760000 Nmm	M_{v}	= 2010000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$,) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

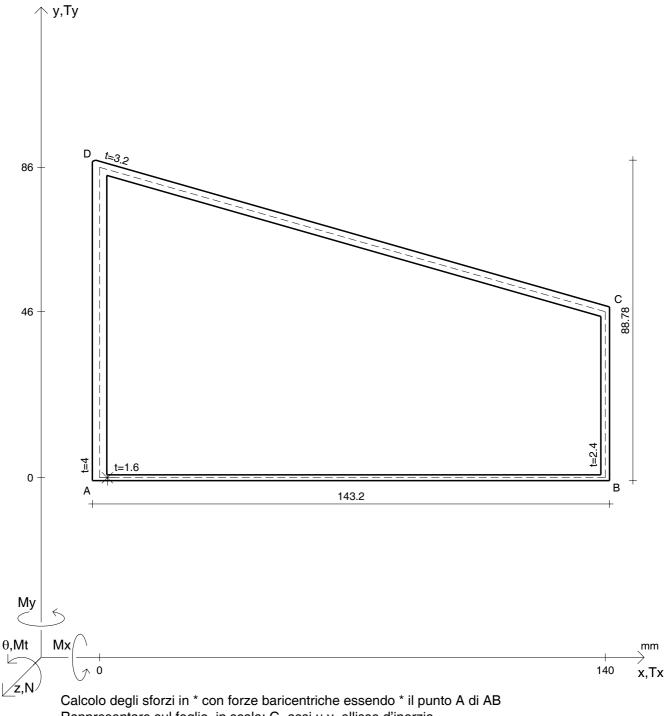

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 77800 N	M _x	= -997000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
M_t	= 1390000 Nmm	M_{v}		E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

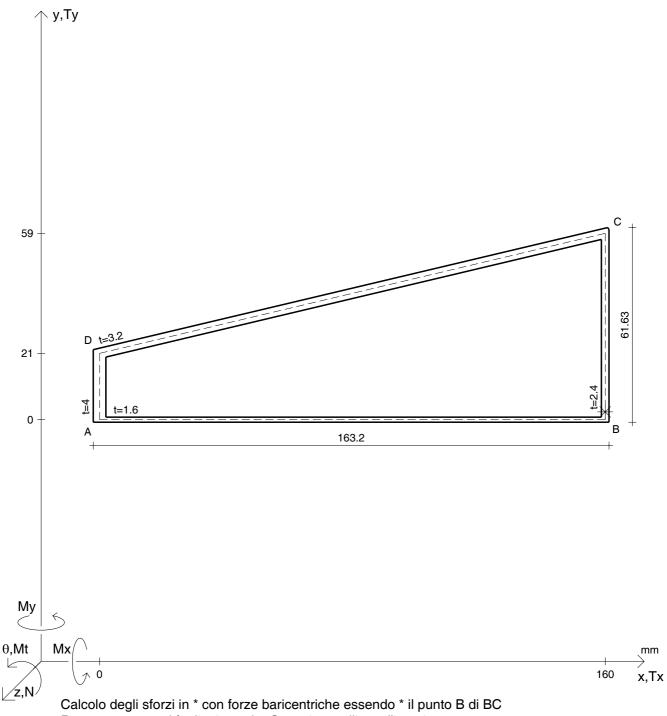

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 59400 N	M _x	= -1180000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1660000 Nmm	M_{v}	= 2470000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

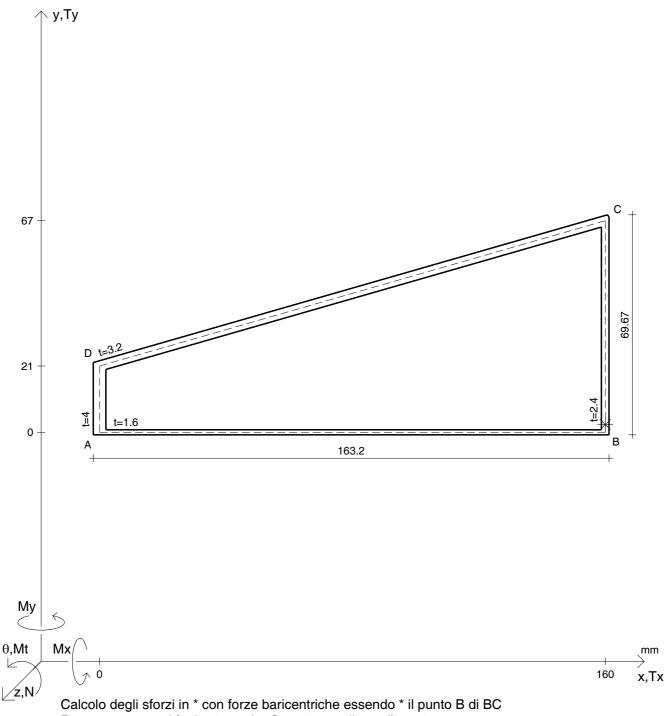

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 68600 N	M _x	= -1400000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1960000 Nmm	M_{v}	= 1850000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

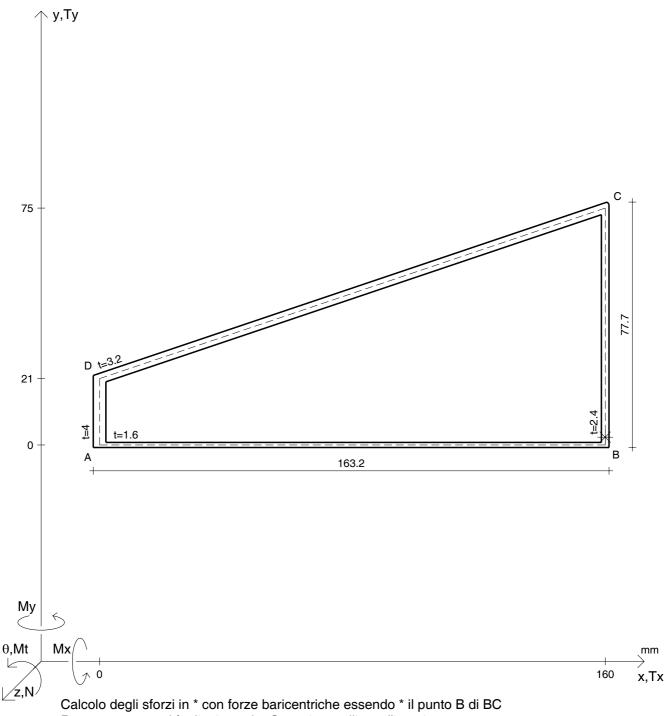

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 69100 N	M _×	= -542000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1530000 Nmm	M_{v}	= -1630000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$,) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

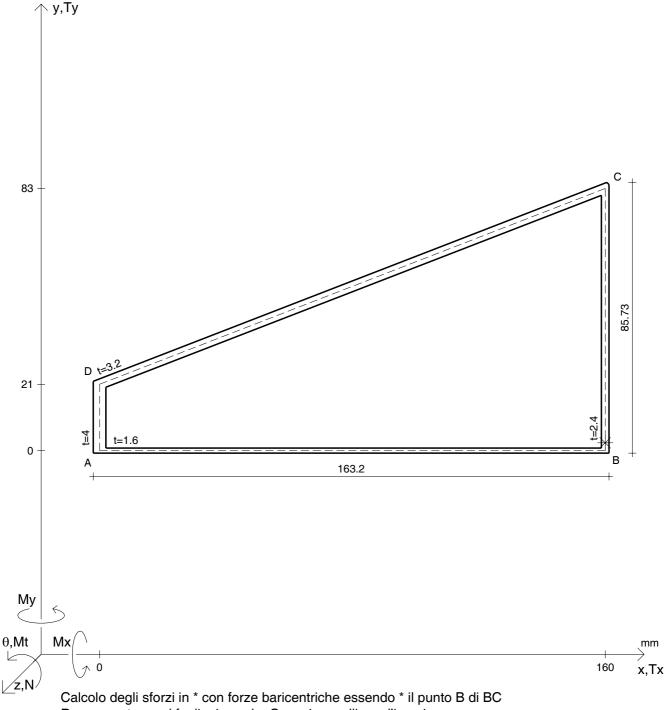

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 77600 N	M _x	= -678000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1250000 Nmm	M_{v}	= -1820000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

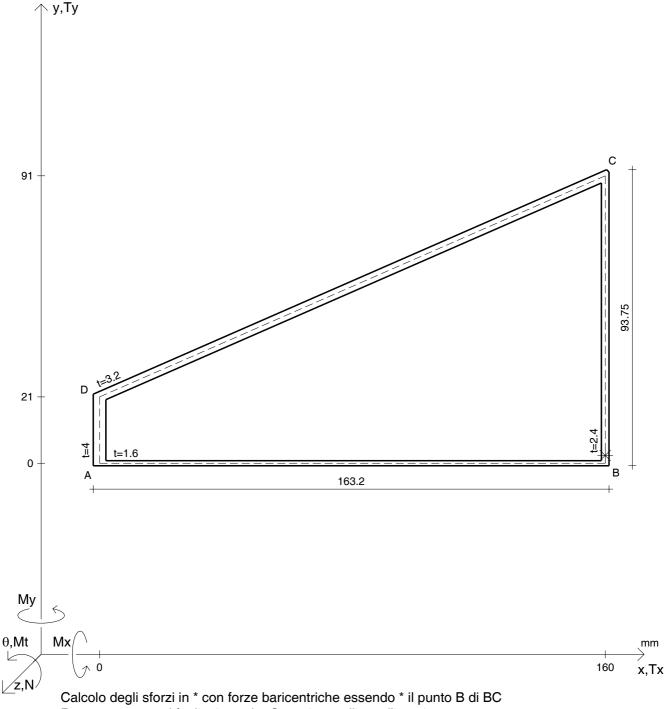

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 58800 N	M _×	= -836000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 1520000 Nmm	M_{v}	= -2030000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

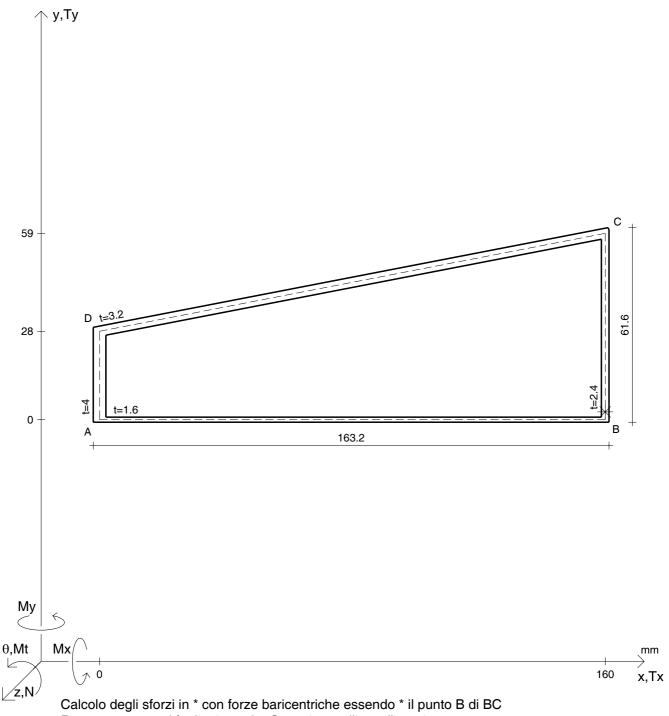

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67500 N	M _x	= -1010000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1820000 Nmm	M_{v}	= -1530000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

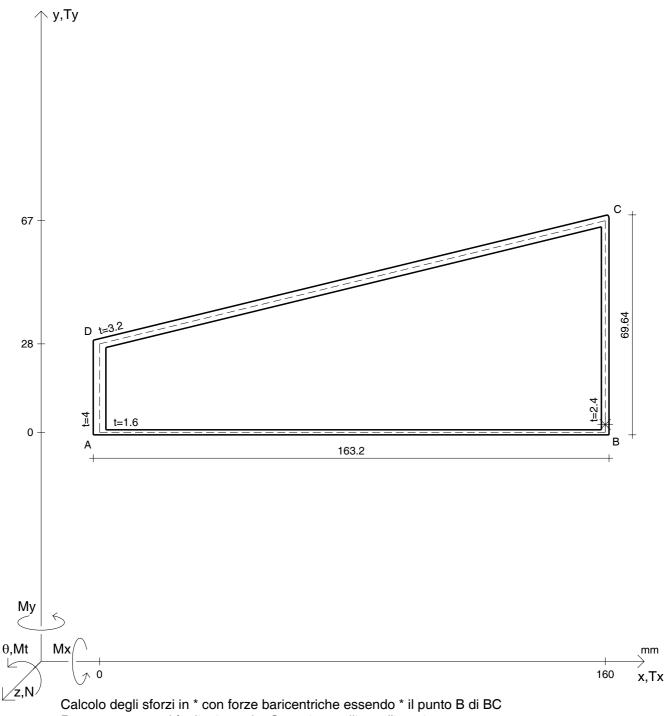

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 76600 N	M _x	= -829000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2150000 Nmm	M_{v}	= -1740000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

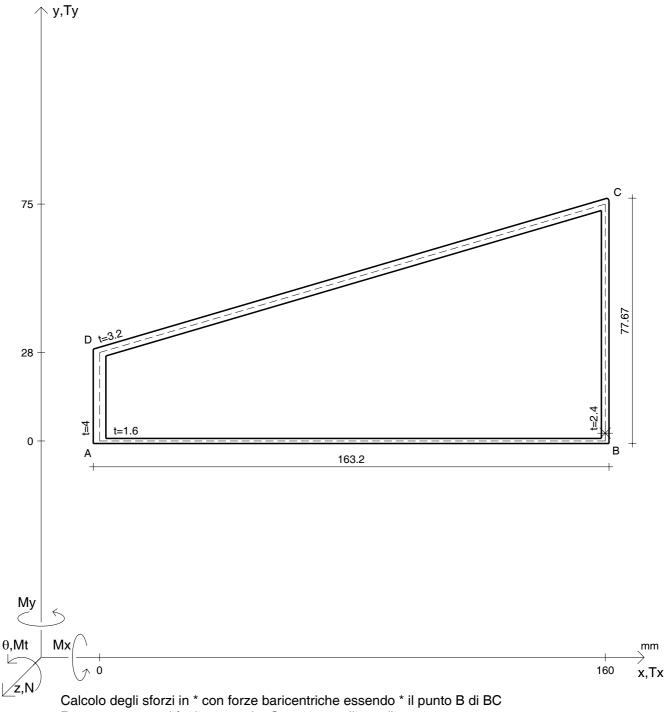

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 77400 N	M _×	= -686000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 1230000 Nmm	M_{v}	= -2030000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

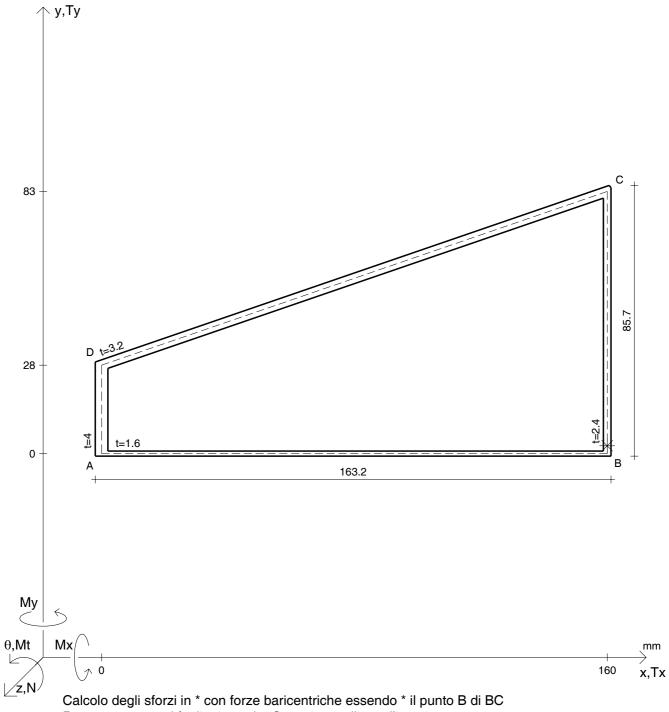

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 58600 N	M _x	= -833000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1500000 Nmm	M_{v}	= -2230000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

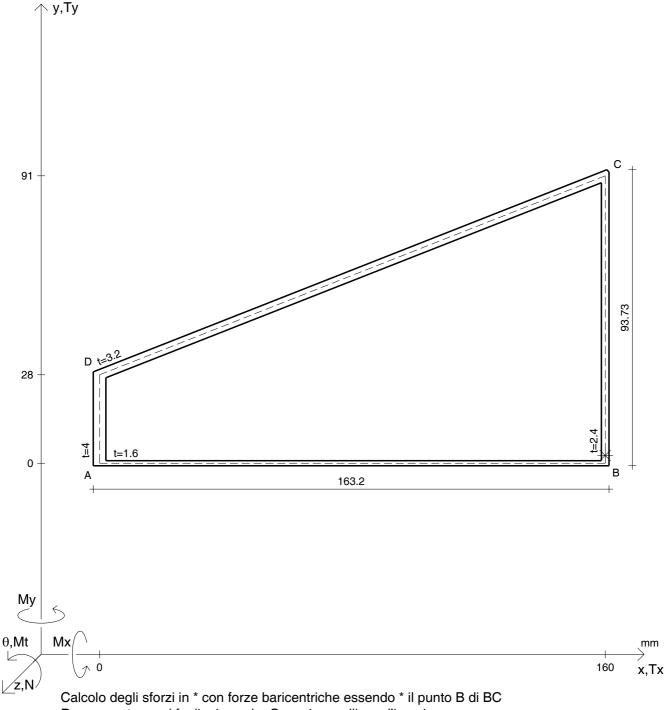

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67100 N	M _×	= -1000000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1800000 Nmm	M_{v}	= -1660000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

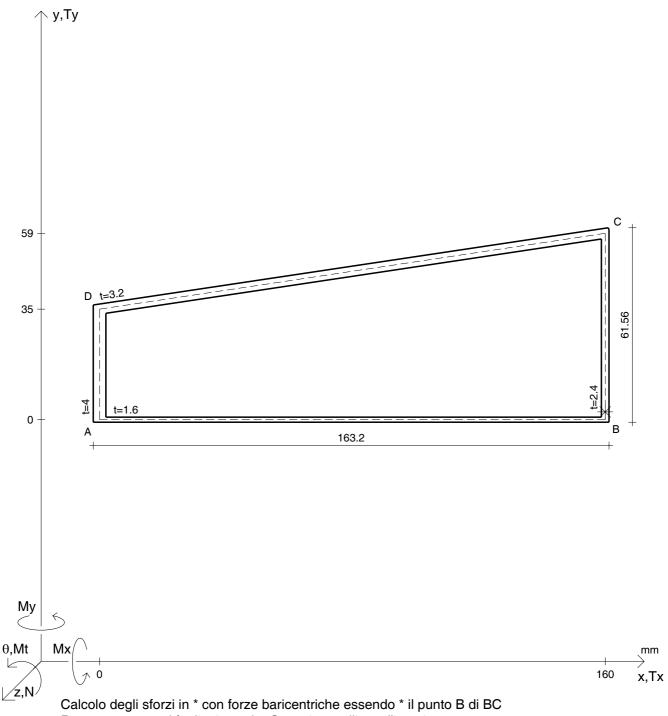

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 76000 N	M _×	= -813000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2130000 Nmm	M_{v}	= -1880000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

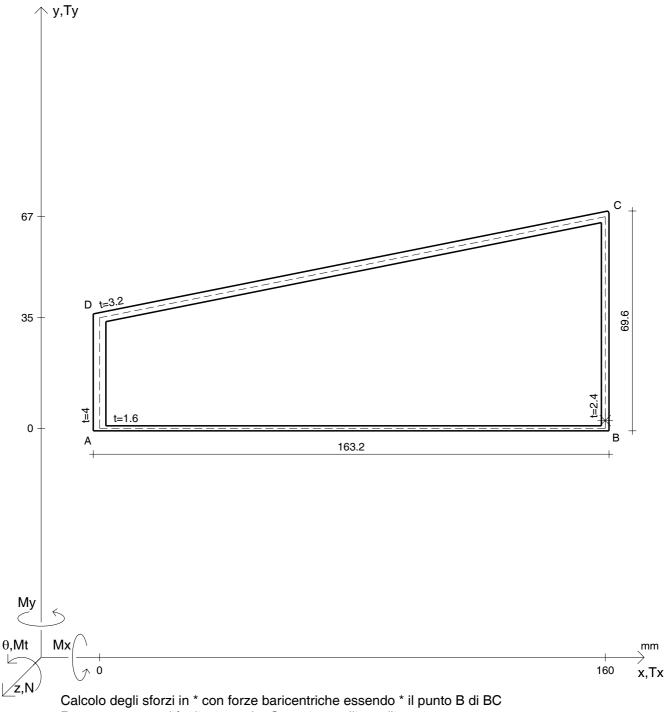

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 85300 N	M _x	= -994000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1690000 Nmm	M_{v}	= -2110000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

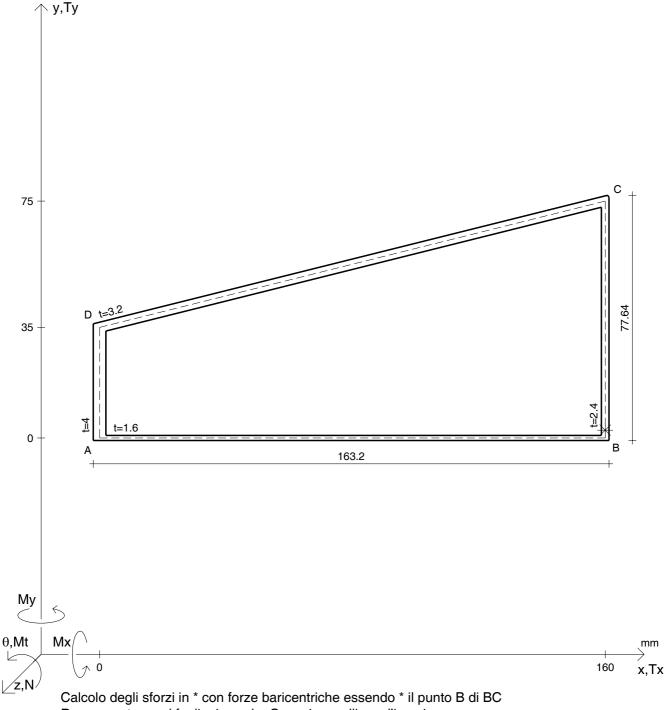

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 58600 N	M _x	= -861000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1490000 Nmm	M_{v}	= -2490000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

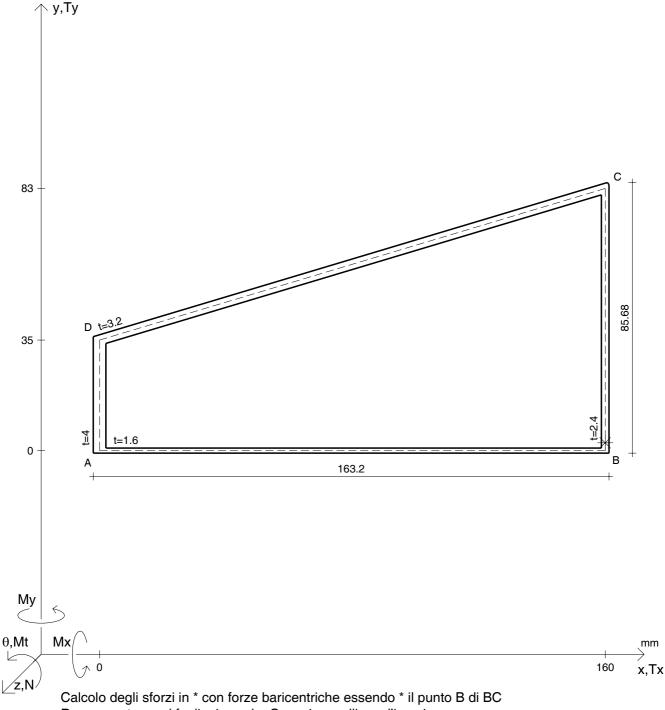

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 66900 N	M _x	= -1010000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1790000 Nmm	M_{v}	= -1830000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

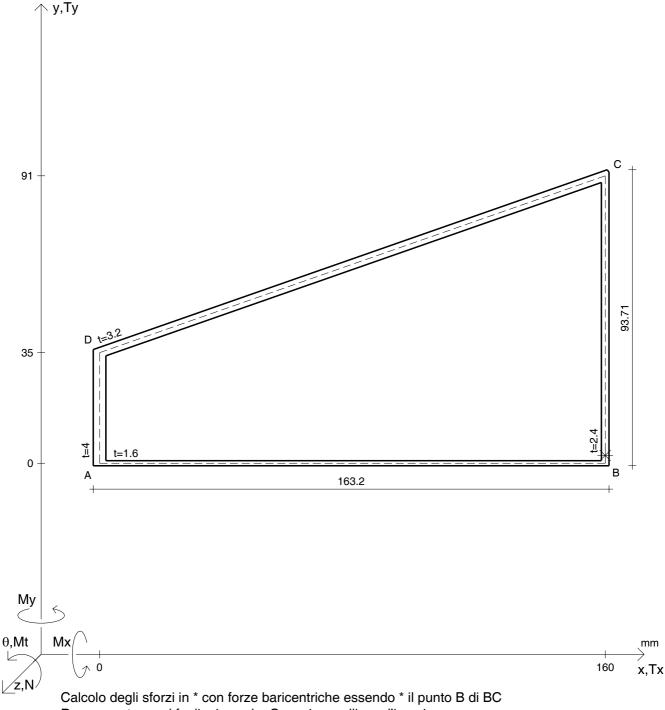

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 75700 N	M _×	= -816000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2110000 Nmm	M_{v}	= -2050000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

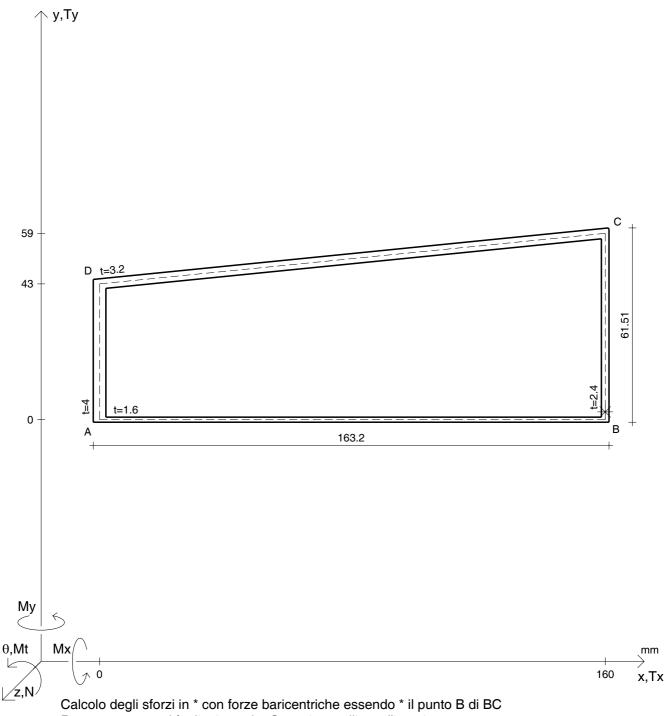

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 84800 N	M _x	= -988000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1670000 Nmm	M_{v}	= -2280000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

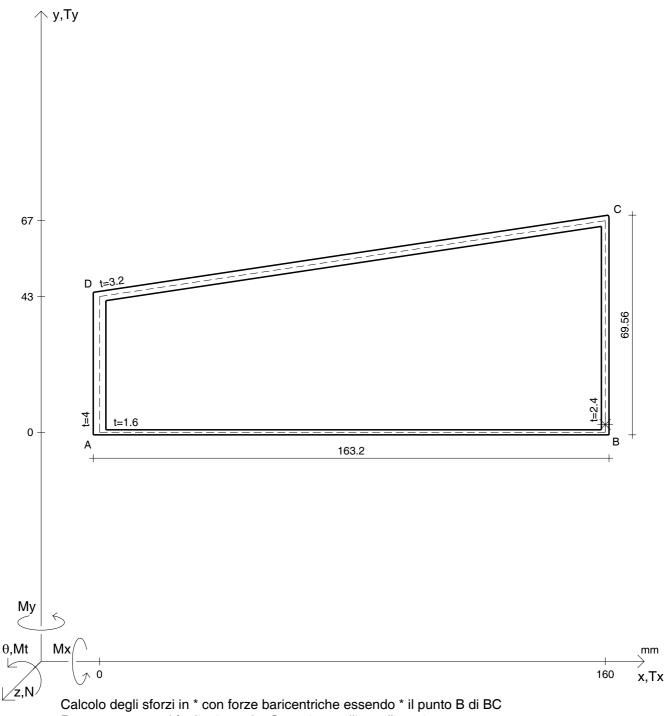

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 64200 N	$M_{x} = -1180000 \text{ Nmm}$	$\sigma_a = 210 \text{ N/mm}^2$	$G = 75000 \text{ N/mm}^2$
M_t	= 2000000 Nmm	$M_{v}^{\circ} = -2520000 \text{ Nmm}$	\vec{E} = 200000 N/mm ²	
x_{G}	=	J_{xy} =	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	J_u =	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =
u_{o}	=	$J_v =$	σ =	$\theta_{t} =$
V_{o}	=	α =	τ =	r _u =
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_xx	=	$\sigma(N) =$	$\sigma_{\text{II}} =$	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	

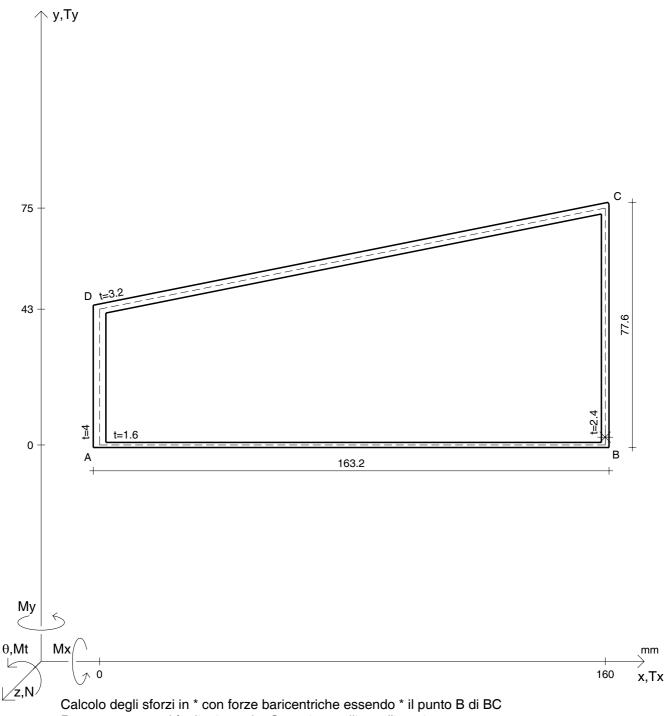

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67200 N	$M_{x} = -1090000 \text{ Nmm}$	$\sigma_a = 210 \text{ N/mm}^2$	$G = 75000 \text{ N/mm}^2$
M_t	= 1790000 Nmm	$M_v = -2070000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$	
x_{G}	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	$J_u =$	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =
u_o	=	$J_v =$	σ =	$\theta_{t} =$
v_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_xx	=	$\sigma(N) =$	$\sigma_{II} =$	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	

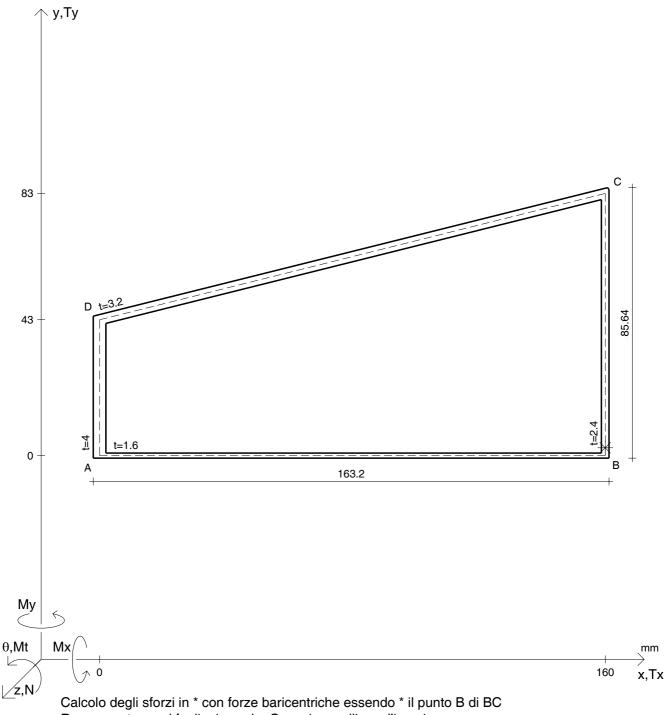

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 75900 N	M _×	= -857000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2110000 Nmm	M_{v}	= -2290000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M)$,) =	$\sigma_{st.}$	ven=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N	,	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

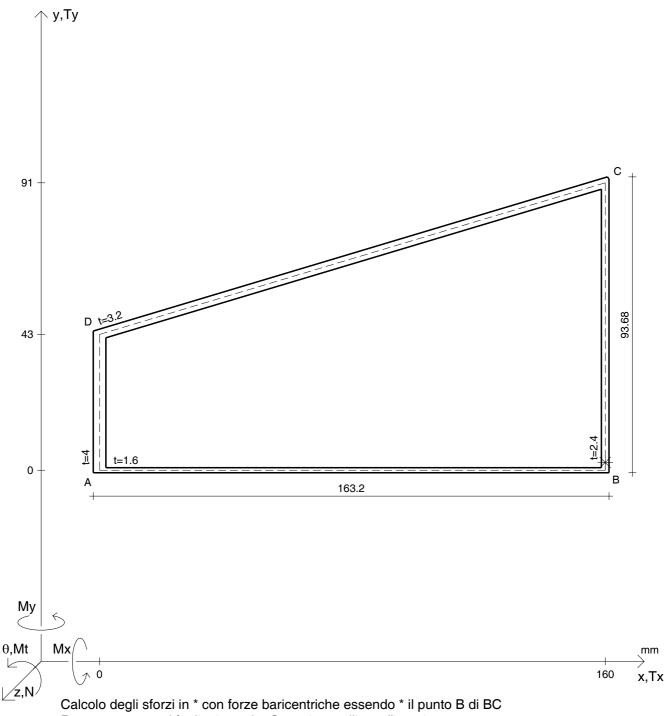

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 84900 N	M _x	= -1020000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1670000 Nmm	M_{v}	= -2520000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

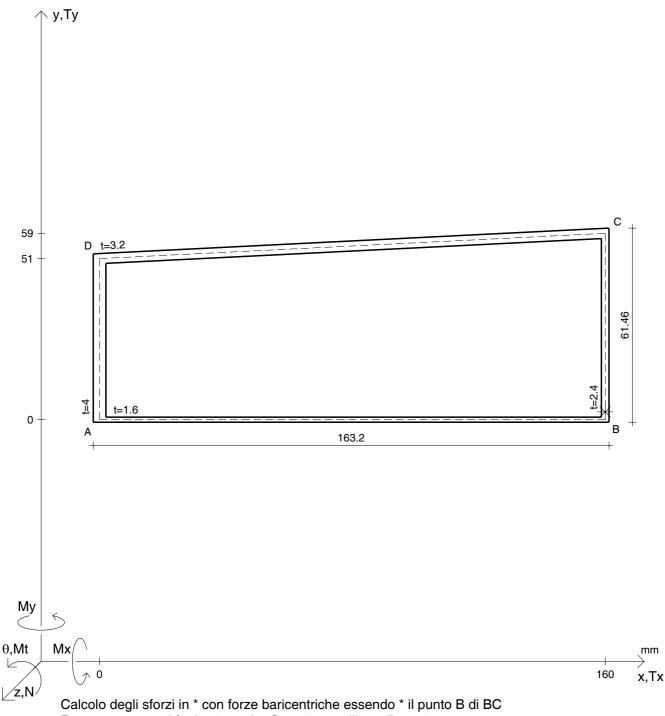

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 64100 N	M _×	= -1200000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2000000 Nmm	M_{v}	= -2760000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

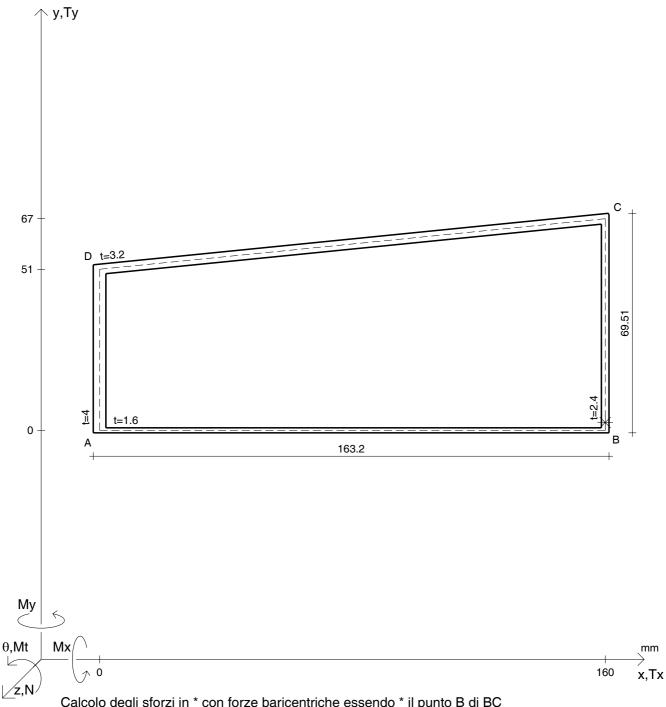

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 73200 N	M _×	= -1410000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2350000 Nmm	M_{v}	= -2040000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_v	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

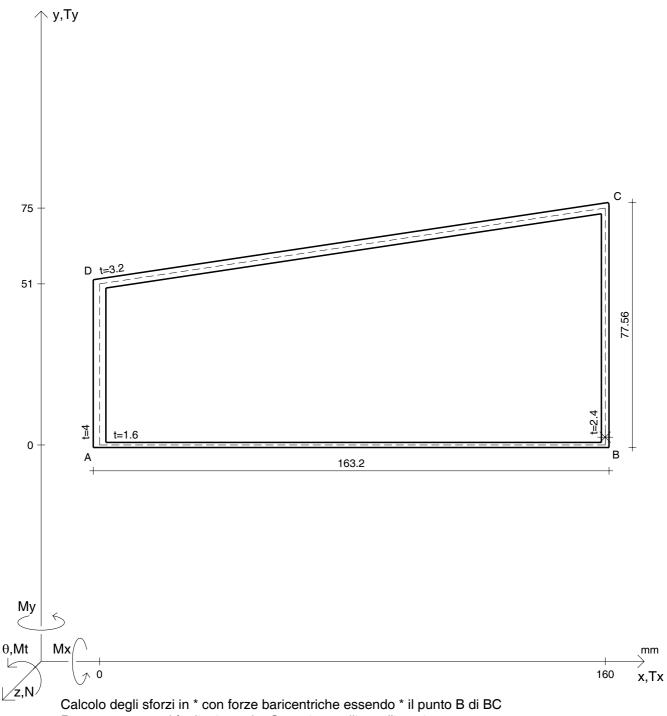
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 76400 N	M _x	= -938000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2110000 Nmm	M_{v}	= -2560000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

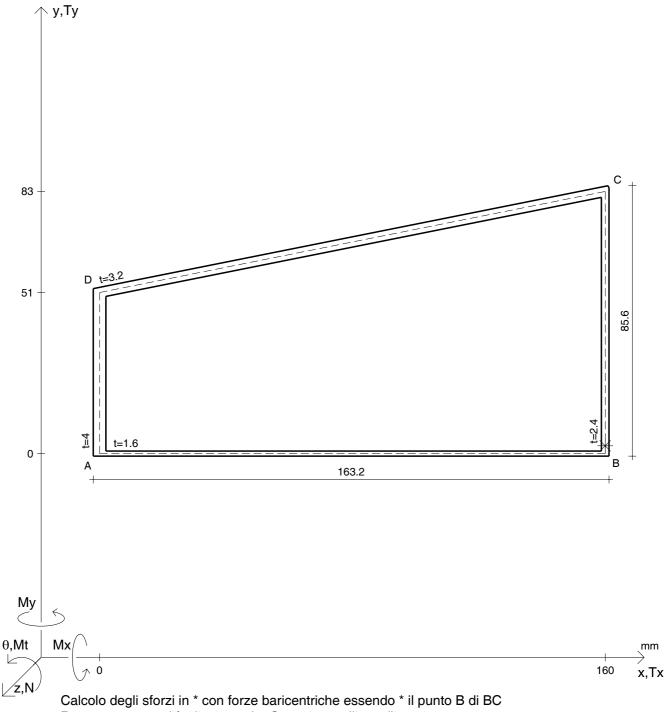

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 85200 N	M _×	= -1090000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 1670000 Nmm	M_{v}	= -2800000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

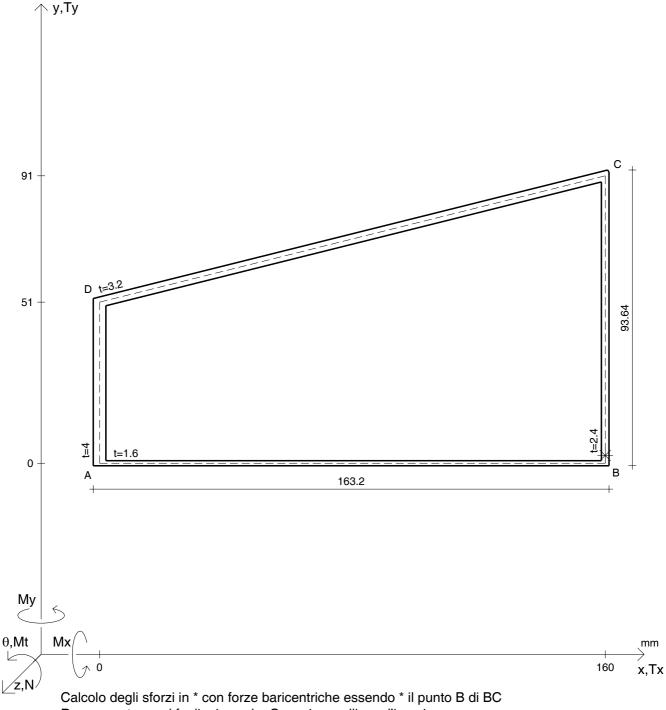

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 64200 N	M _x	= -1260000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2000000 Nmm	M_{v}	= -3040000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}^{m}	=	σ(M	x)=	σ_{tres}	_{ca} =		

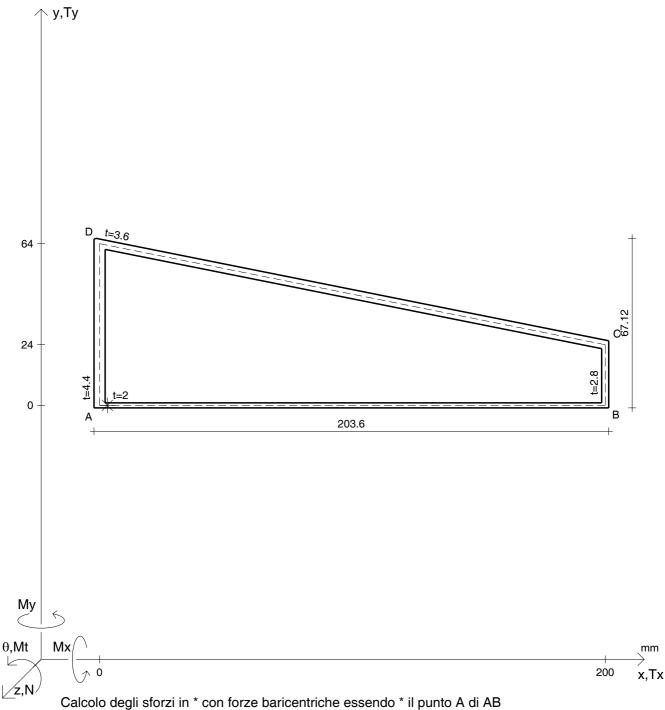

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 73300 N	M _x	= -1460000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2350000 Nmm	M_{v}	= -2240000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

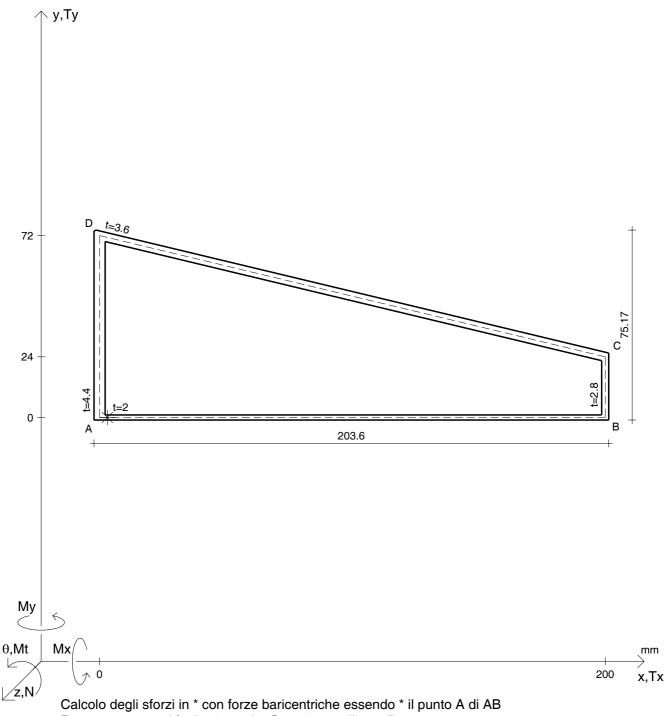

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 82700 N	M _x	= -1140000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2730000 Nmm	M_{v}	= -2500000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

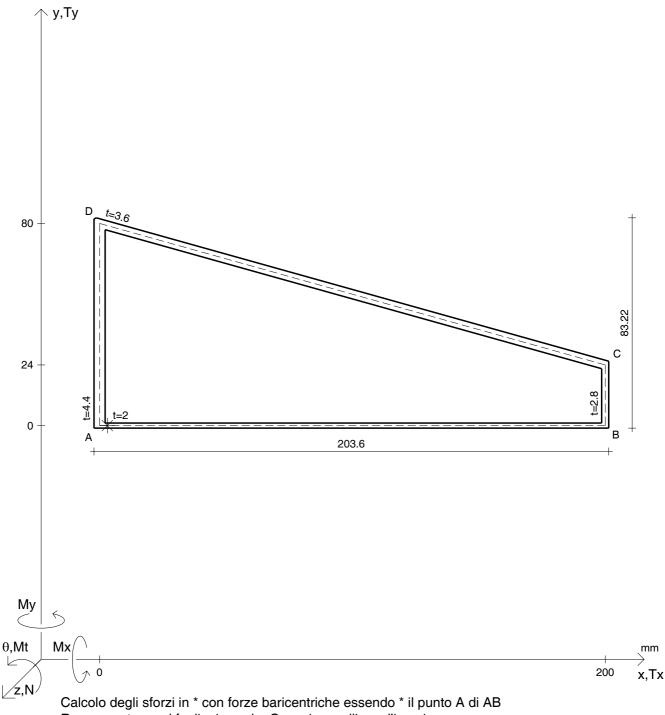

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 103000 N	M _×	= -1010000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 1810000 Nmm	M_{v}	= 3520000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

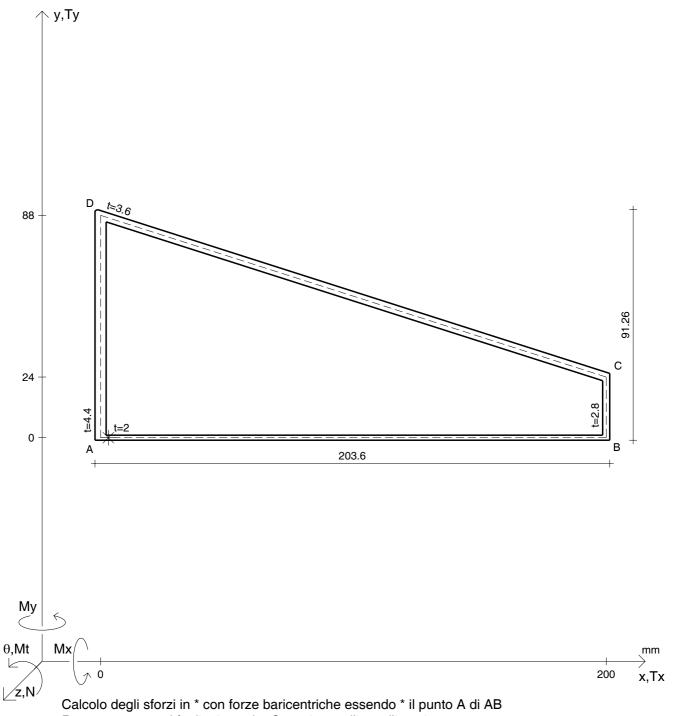

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 78500 N	M _×	= -1240000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2210000 Nmm	M_{v}	= 3930000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

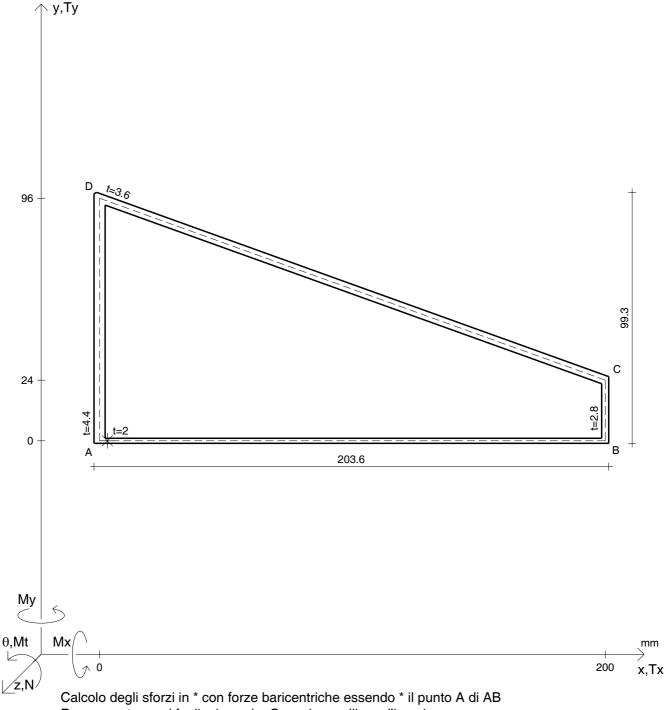

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 90200 N	M _×	= -1500000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2640000 Nmm	M_{v}	= 2960000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

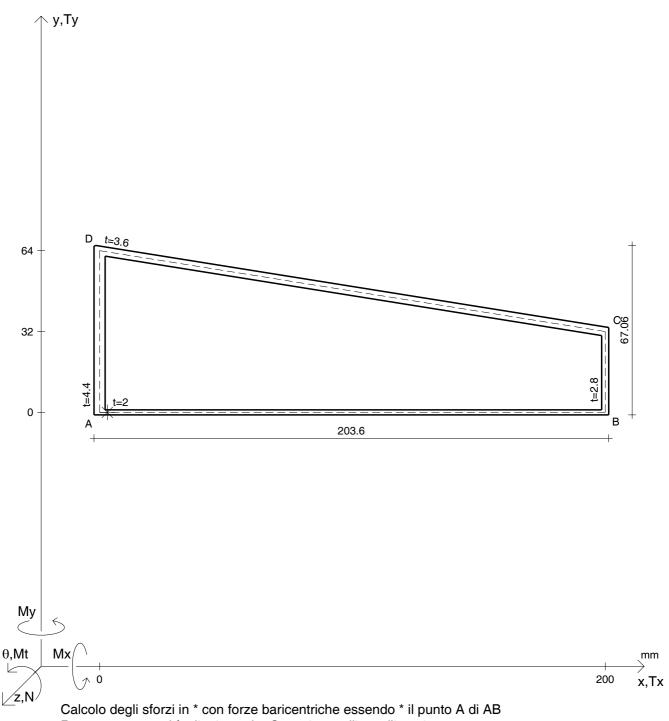

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 102000 N	 М _х	= -1230000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3120000 Nmm	M_{v}	= 3390000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	<i>y</i> ·	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	ren=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

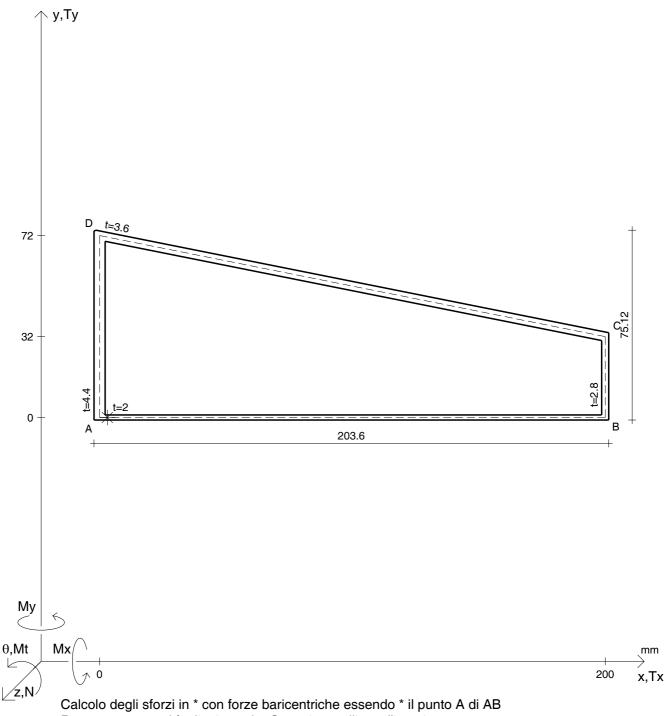

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 115000 N	M _×	= -1510000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2470000 Nmm	M_{v}	= 3830000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

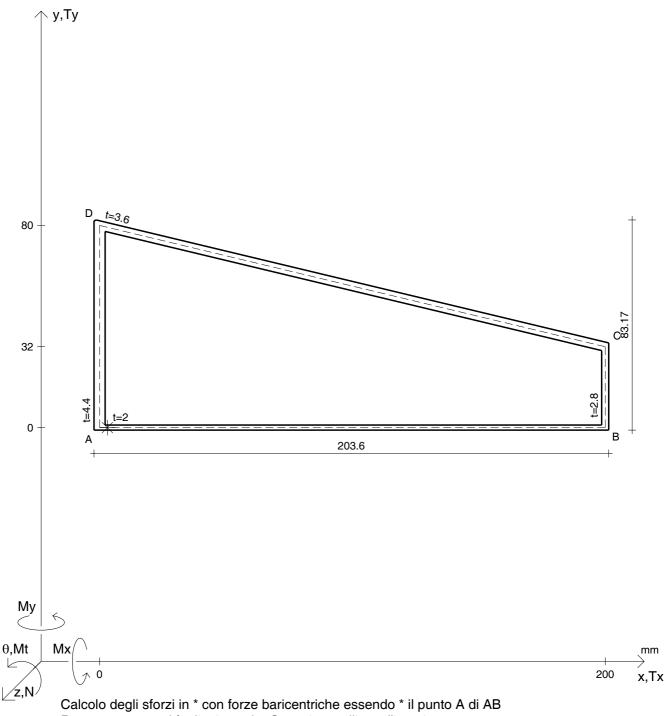

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 78100 N	M _x	= -1270000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2230000 Nmm	M_{v}	= 4210000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

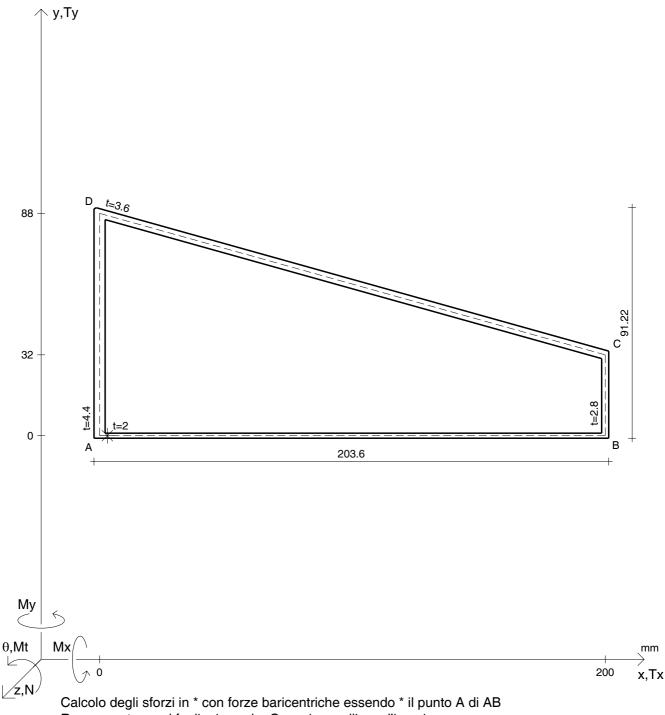

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 89400 N	M _x	= -1520000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2660000 Nmm	M_{v}	= 3170000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

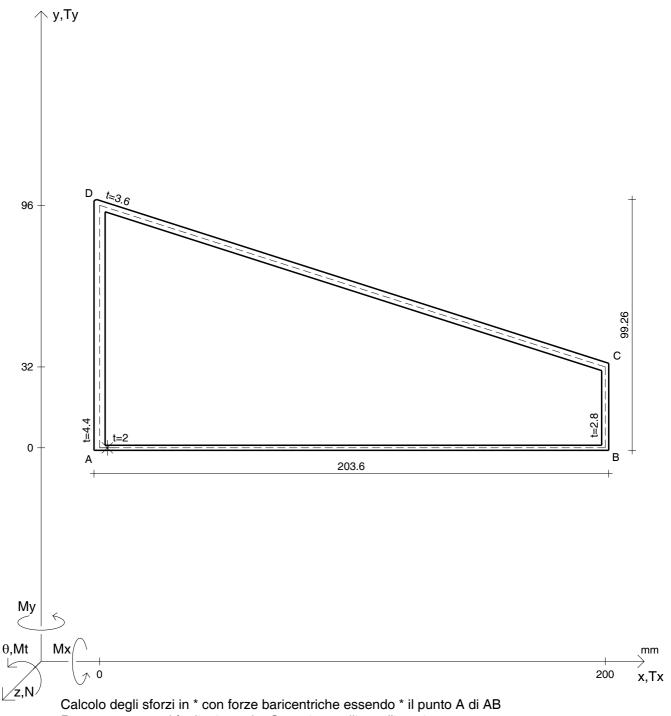

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 101000 N	M _x	= -1220000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3140000 Nmm	M_{v}	= 3610000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{st.v}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

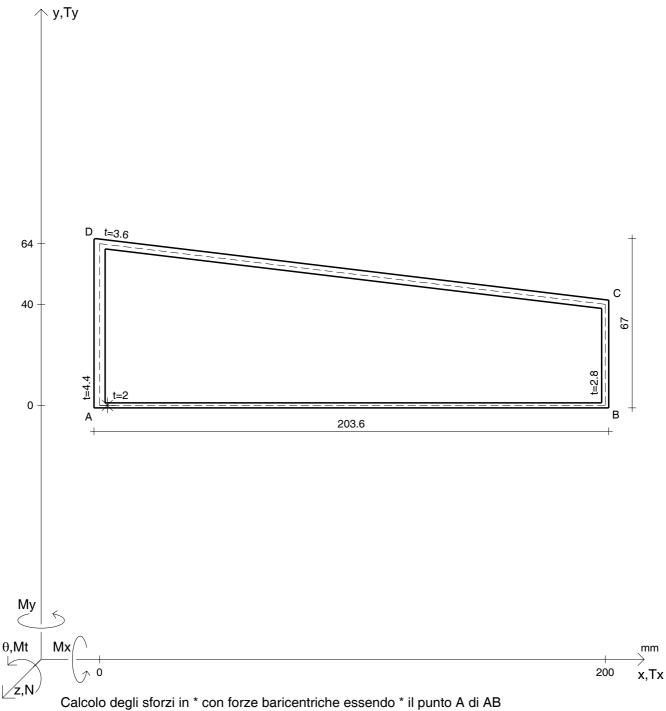

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 113000 N	 М _×	= -1490000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2480000 Nmm	$M_{v}^{}$	= 4080000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	<i>y</i> ·	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		
@ A	dolfo Zavelani Rossi,	Polited	nico di Milano, vers.24.	.05.07	7		

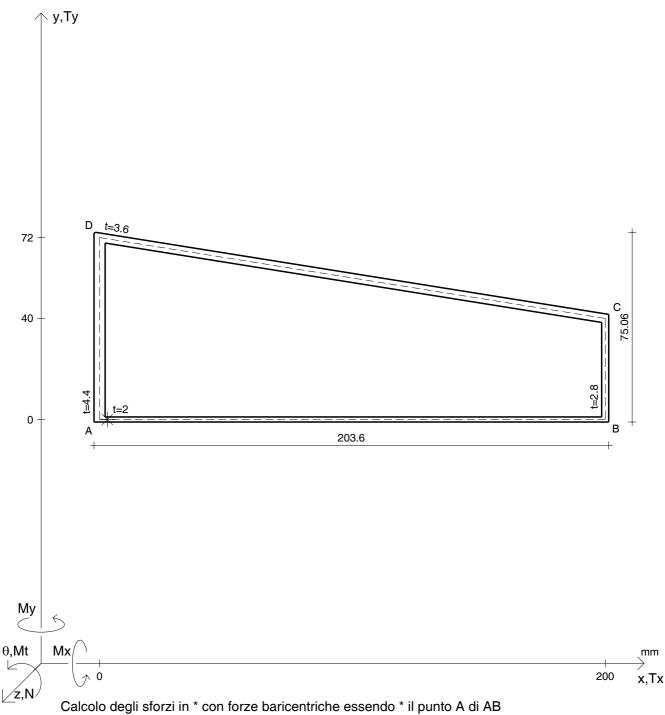

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 86100 N	M _×	= -1800000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2950000 Nmm	M_{v}	= 4560000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

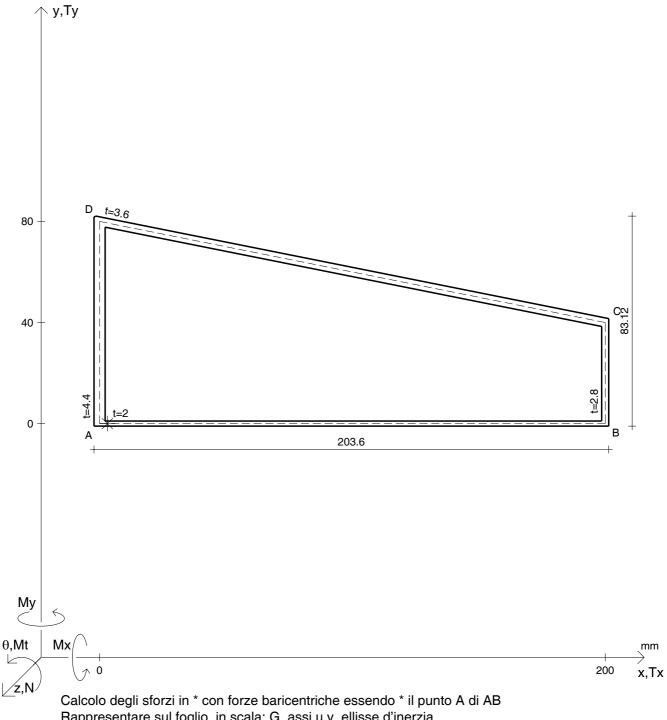

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 89400 N	M _×	= -1600000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2700000 Nmm	M_{v}	= 3340000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

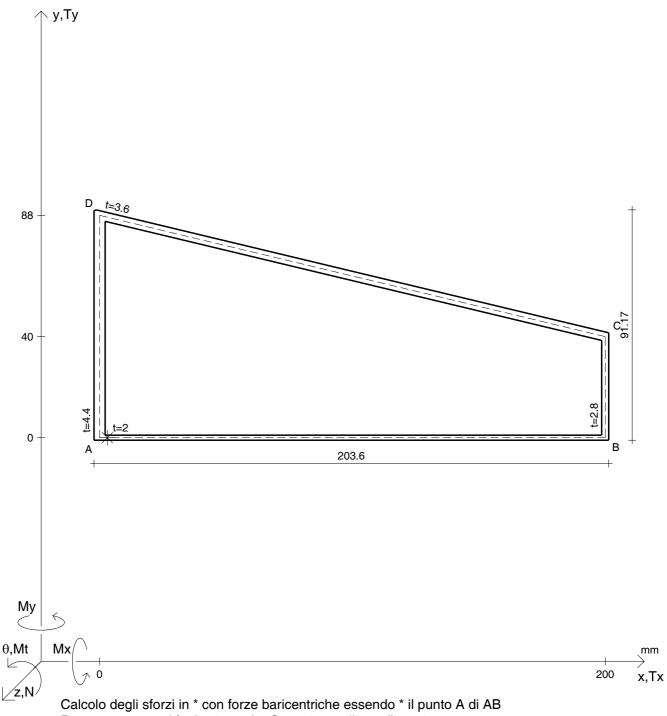

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 101000 N	M _×	= -1270000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3180000 Nmm	M_{v}	= 3770000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

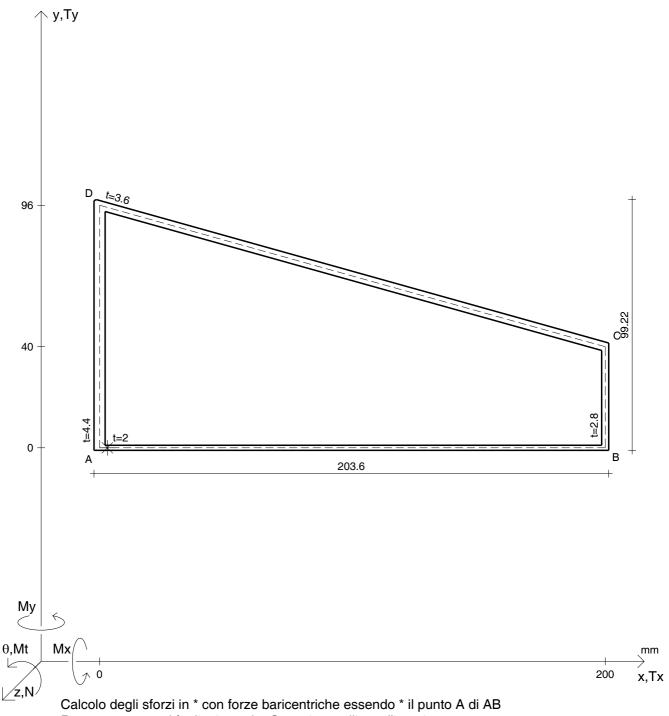

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 113000 N	M _×	= -1530000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2510000 Nmm	M_{v}	= 4230000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

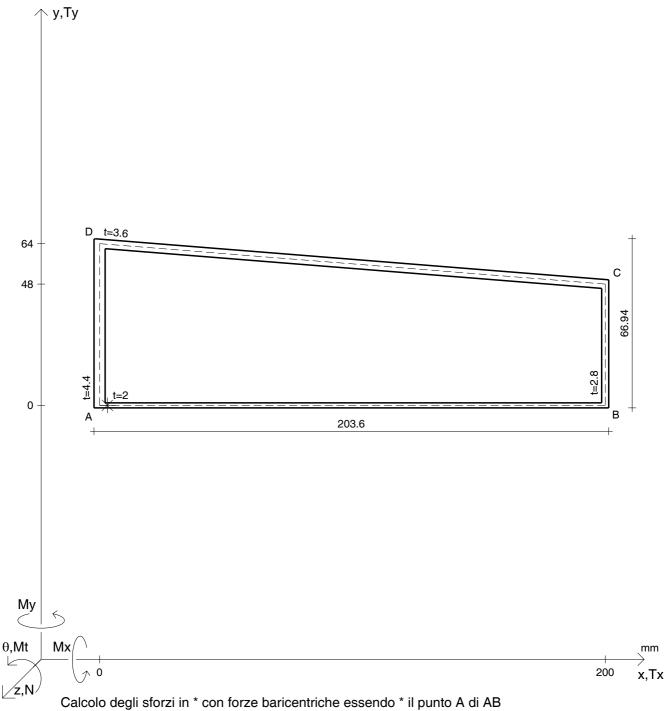

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 85900 N	M _x	= -1820000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2990000 Nmm	M_{v}	= 4710000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}			

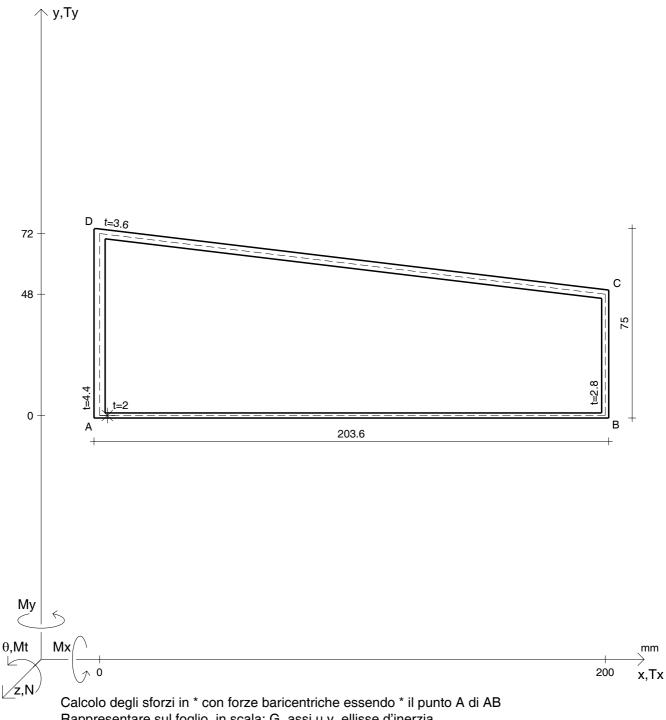

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 98300 N	M _x	= -2150000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3510000 Nmm	M_{v}	= 3540000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

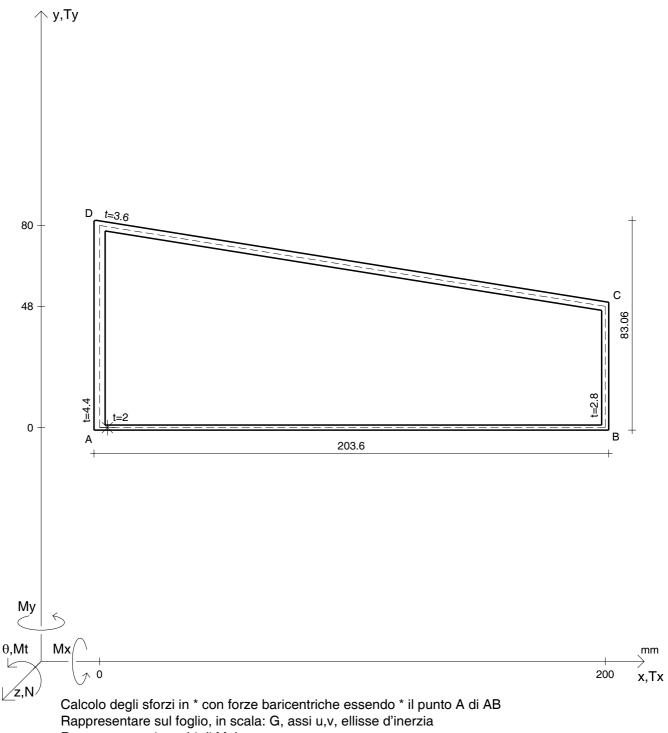

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 100000 N	M _x	= -1350000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3210000 Nmm	M_{v}	= 4020000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

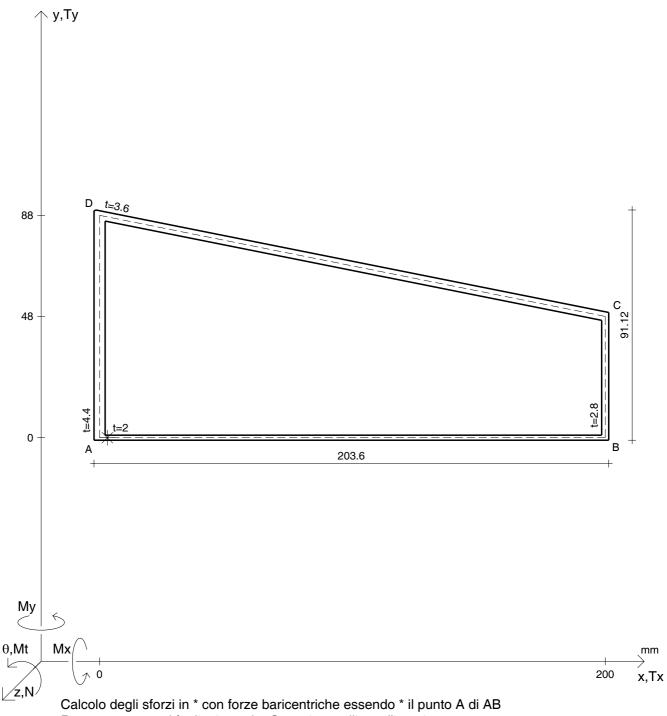

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 113000 N	M _×	= -1600000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2540000 Nmm	M_{v}	= 4460000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

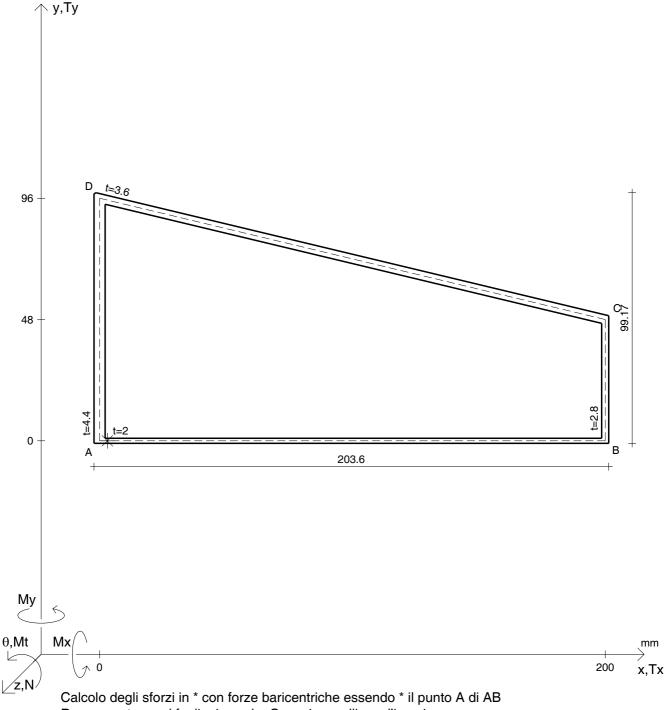

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 85600 N	M _×	= -1880000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3030000 Nmm	M_{v}	= 4920000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

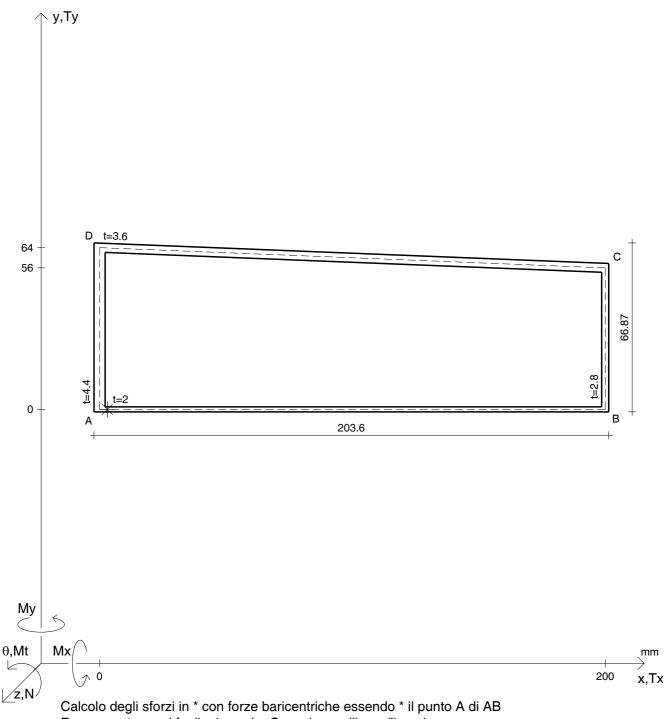

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 97900 N	M _×	= -2200000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3550000 Nmm	M_y	= 3680000 Nmm		= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	ren=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		
@ A	dolfo Zavelani Rossi, I	Polited	nico di Milano, vers.24.	05.07	,		

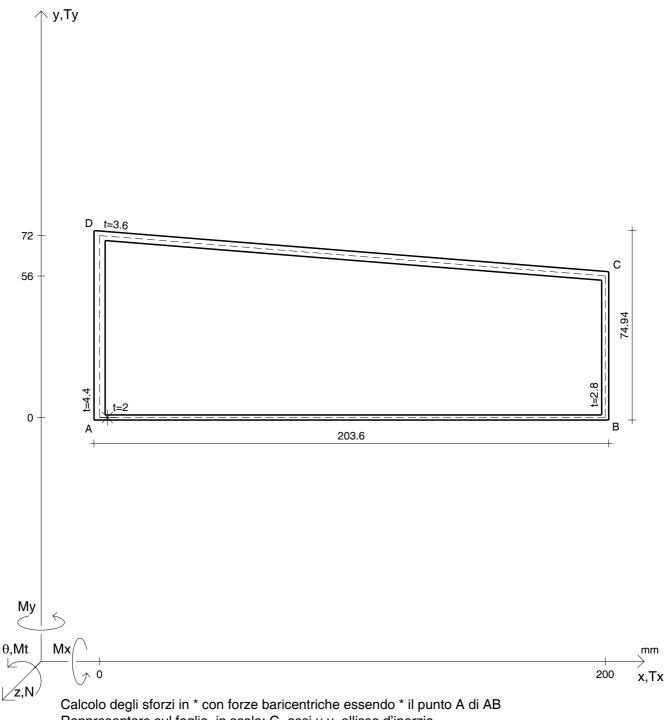

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 110000 N	M _×	= -1730000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 4110000 Nmm	M_{v}	= 4170000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

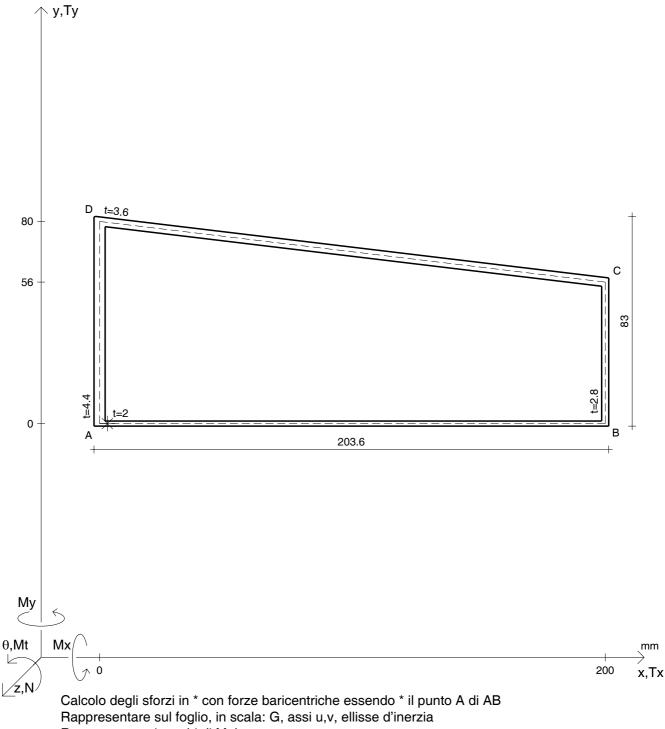

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 112000 N	M _x	= -1720000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
M_t	= 2550000 Nmm	M_{v}	= 4790000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

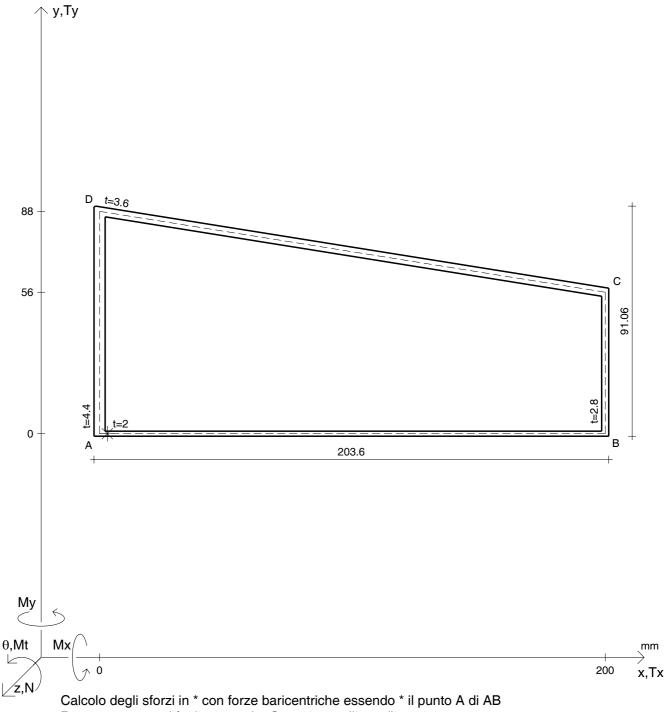

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 85100 N	M _×	= -1990000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3050000 Nmm	M_{v}^{Λ}	= 5240000 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	J_{xy}	=	σ(M		σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

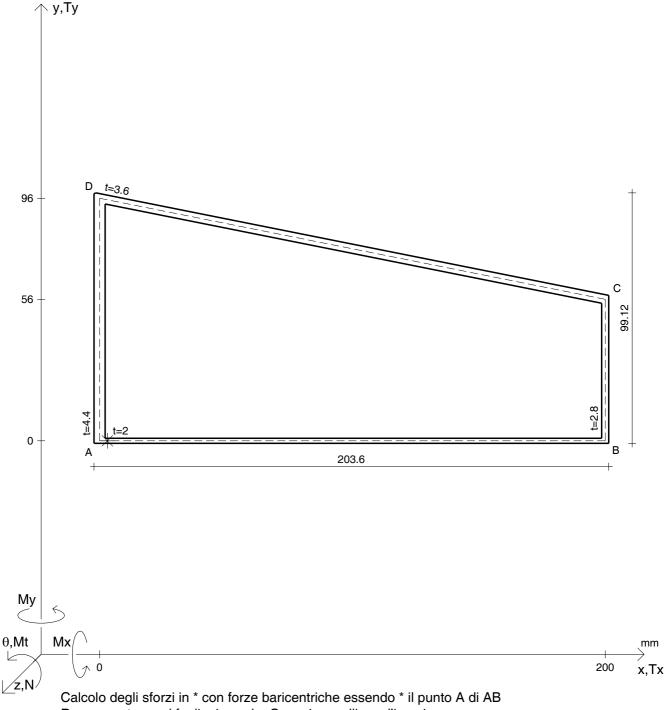

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 97300 N	M _×	= -2290000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3580000 Nmm	M_{v}	= 3880000 Nmm	E			
x_{G}	=	J_{xy}	=	σ(M ₃	1.5	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$	=	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}		$\sigma(M_x)$)=	σ_{treso}	ea=		

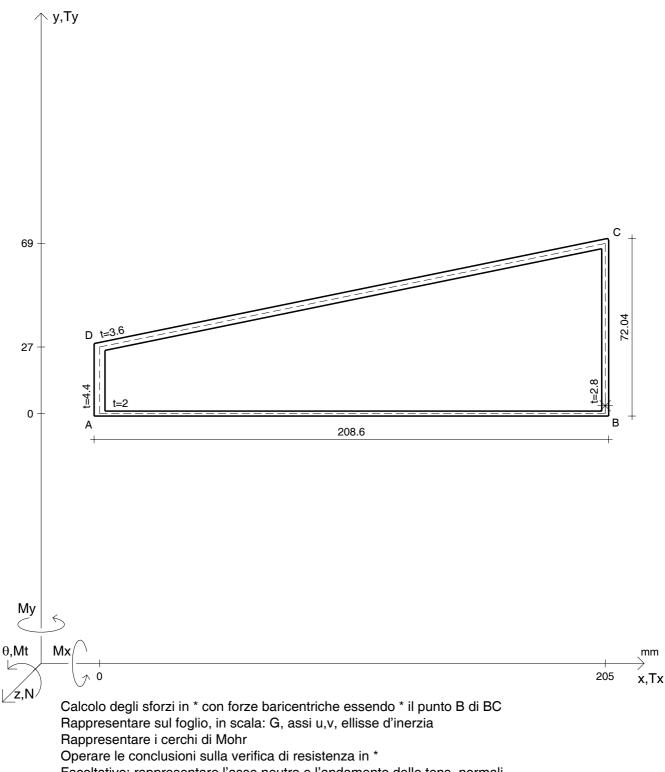

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

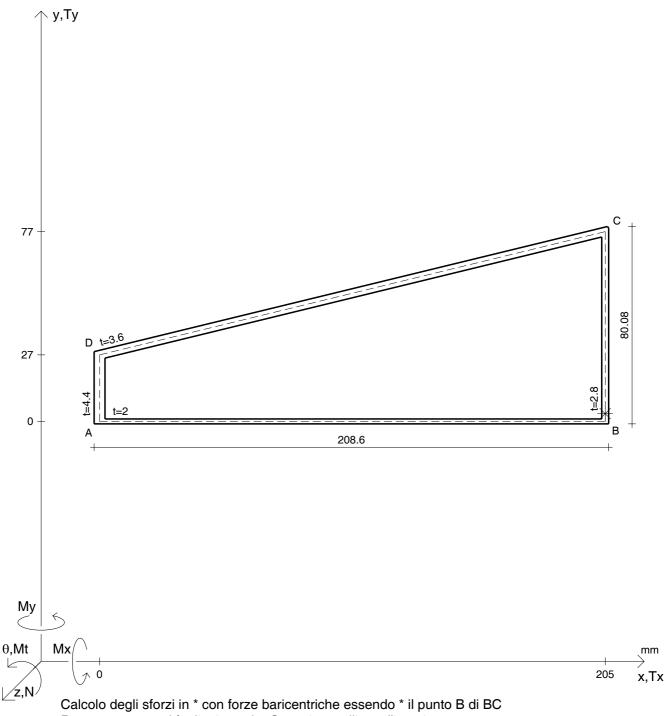
Ν	= 110000 N	M _×	= -1790000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 4150000 Nmm	M_{v}	= 4360000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

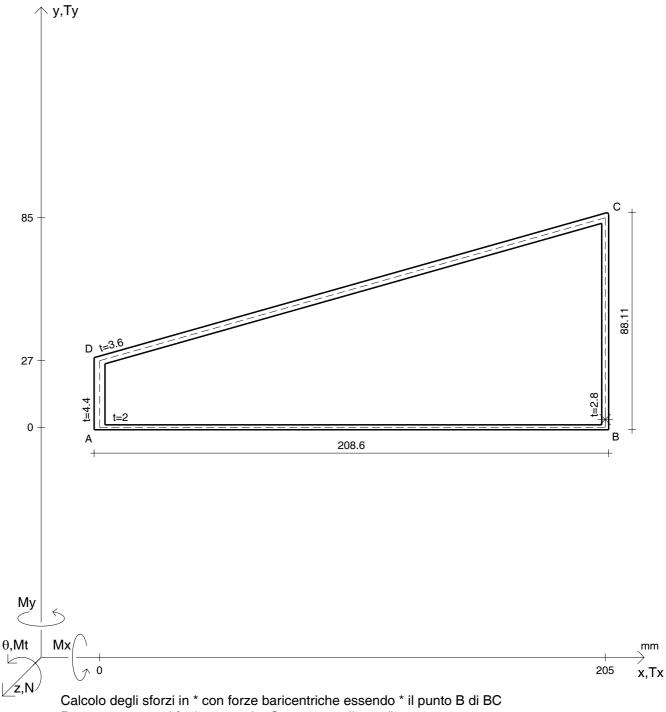
Facoltativo: rappresentare l'andamento delle tens. tangenziali.


Ν	= 123000 N	M _x	= -2110000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3230000 Nmm	M_{v}	= 4860000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 81100 N	M _x	= -1230000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2410000 Nmm	M_{v}	= -3800000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

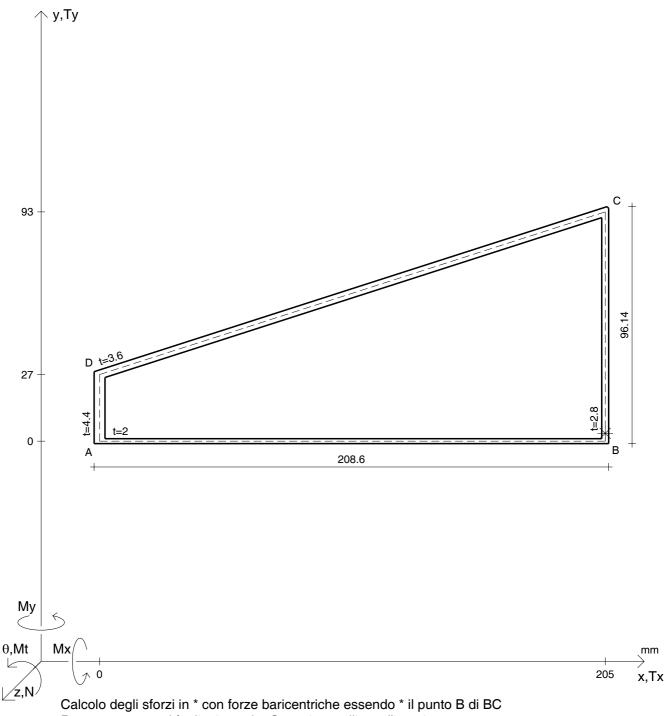

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 92400 N	M _×	= -1480000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 2890000 Nmm	M_{v}	= -2830000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

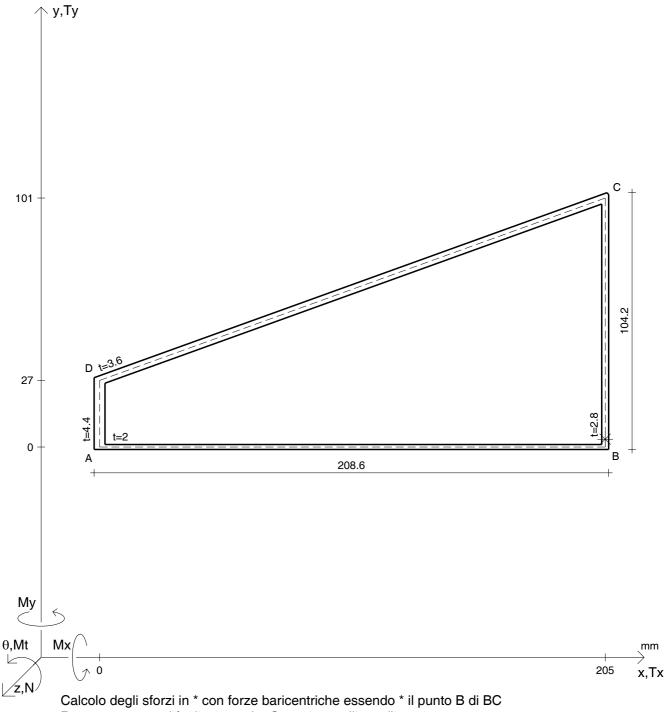

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 104000 N	M _x	= -1190000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3410000 Nmm	M_{v}	= -3190000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

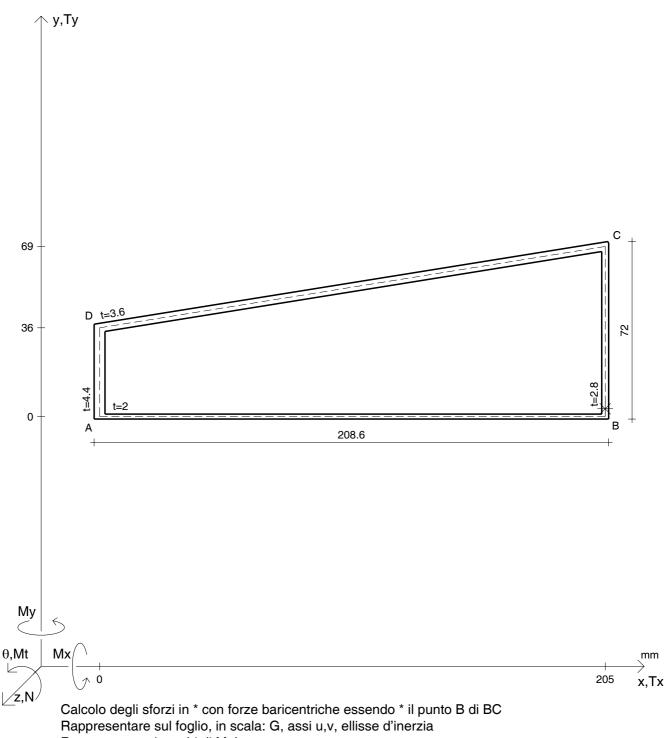

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 116000 N	$M_x = -1450000 \text{ Nmm}$	$\sigma_a = 210 \text{ N/mm}^2$	$G = 75000 \text{ N/mm}^2$
M_t	= 2700000 Nmm	$M_y = -3570000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$	
x_{G}	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	$J_u =$	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =
u_o	=	$J_{v} =$	σ =	$\theta_{t} =$
v_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_xx	=	$\sigma(N) =$	$\sigma_{II} =$	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	

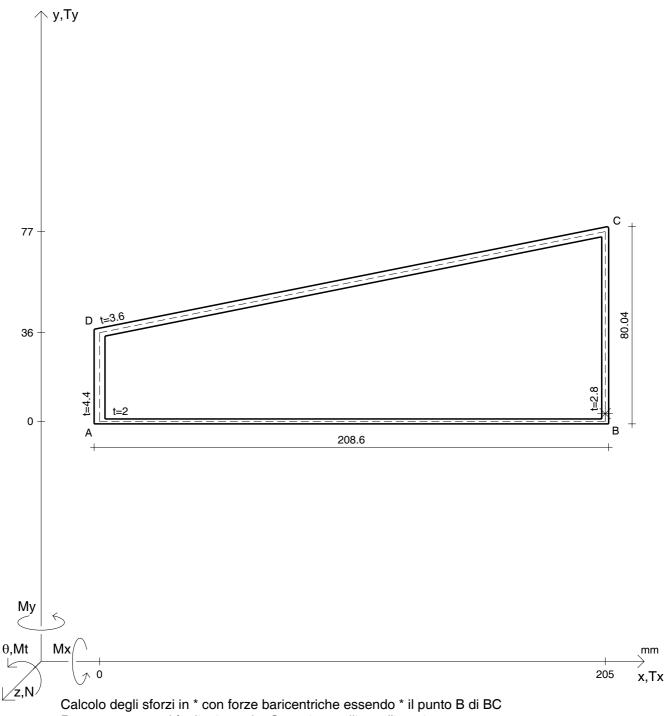

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 87800 N	M _×	= -1730000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3220000 Nmm	M_{v}	= -3960000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

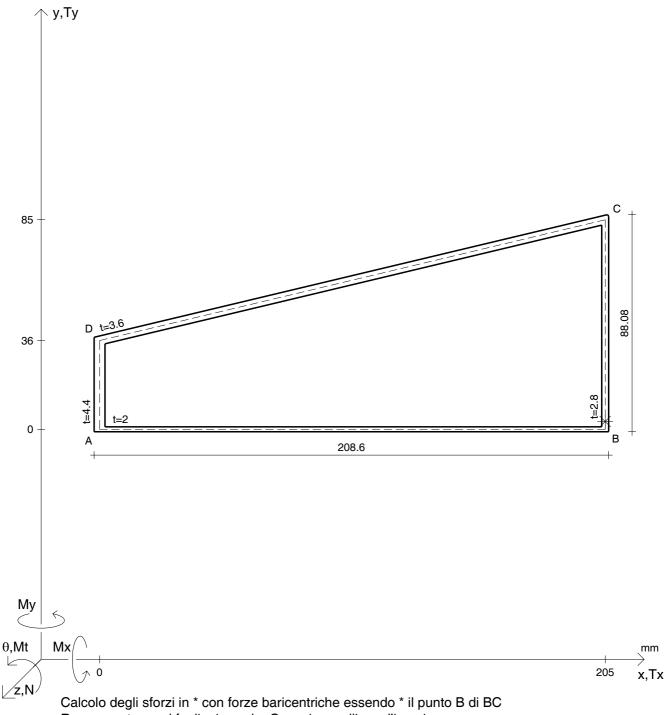

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 92700 N	M _×	= -1550000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2920000 Nmm	M_{v}	= -3190000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

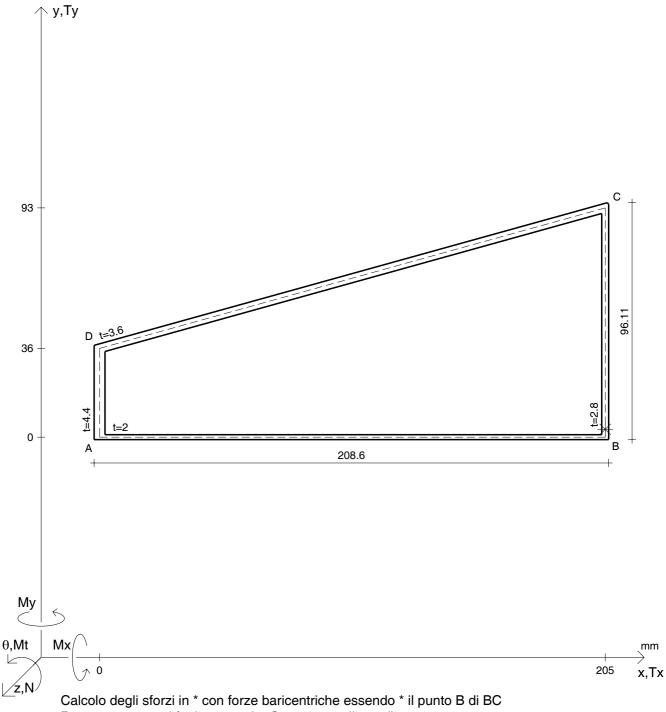

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 104000 N	M _x	= -1230000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3440000 Nmm	M_{v}	= -3550000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

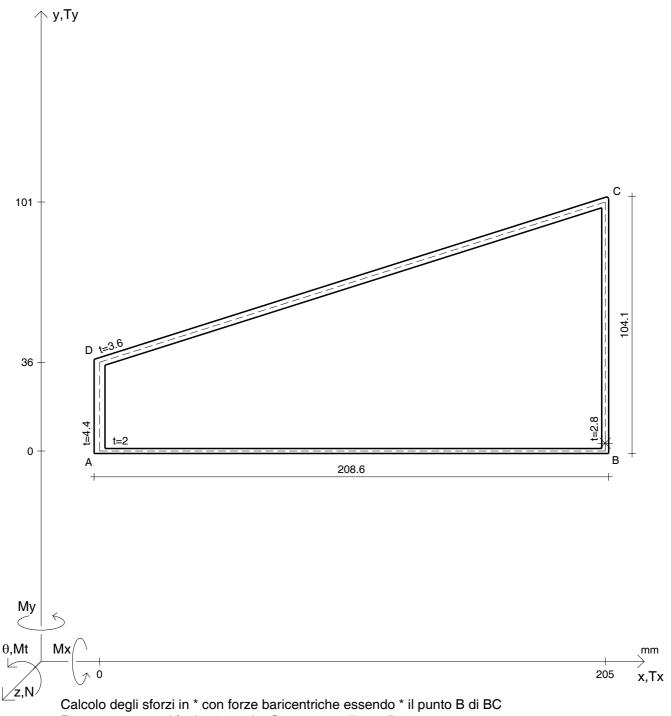

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 116000 N	$M_x = -1480000 \text{ Nmn}$		$G = 75000 \text{ N/mm}^2$
M_t	= 2720000 Nmm	$M_v = -3940000 \text{ Nmn}$		
x_{G}	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	$J_u =$	$\tau(M_t) =$	$\sigma_{\sf st.ven}$ =
u_o	=	$J_v =$	σ =	$\theta_{t} =$
V_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$
J_xx	=	$\sigma(N) =$	$\sigma_{II} =$	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	

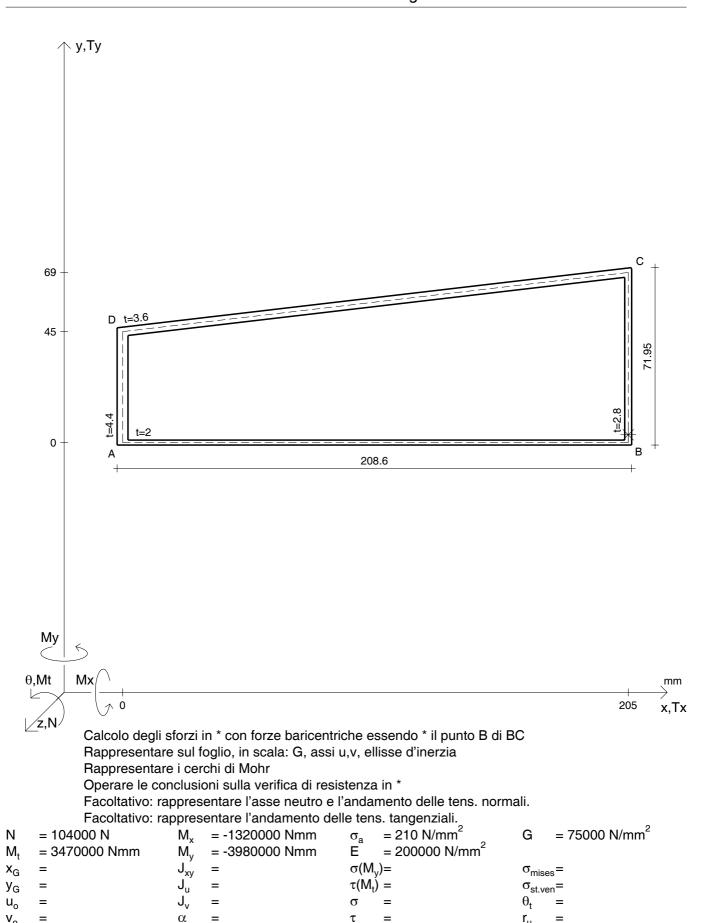

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 87700 N	M _×	= -1760000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3250000 Nmm	M_{v}	= -4330000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

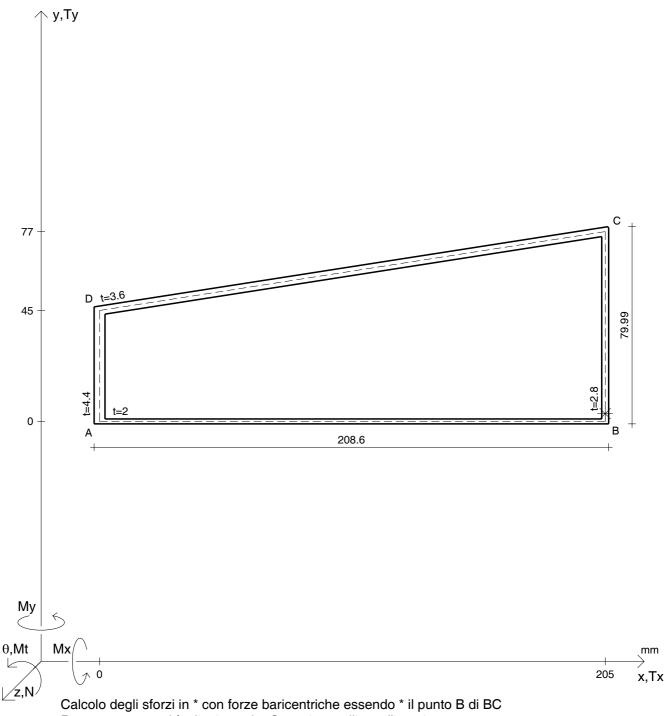

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 99900 N	M _×	= -2070000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3810000 Nmm	M_{v}	= -3230000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{ca} =		



 σ_{l}

 σ_{II}

 $J_{yy} = \sigma(M_x) = \sigma_{tresc}$ @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

 $\sigma(N) =$

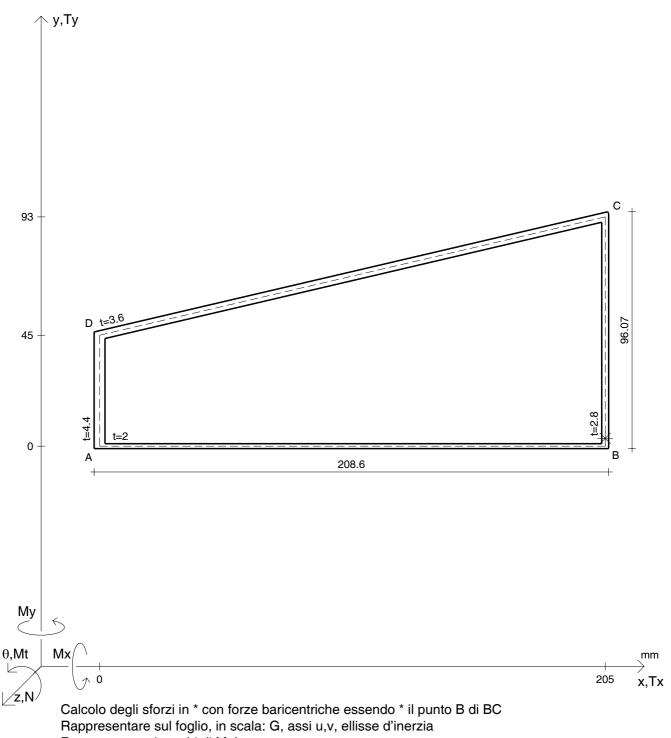

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 116000 N	M _×	= -1560000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 2750000 Nmm	M_{v}	= -4380000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

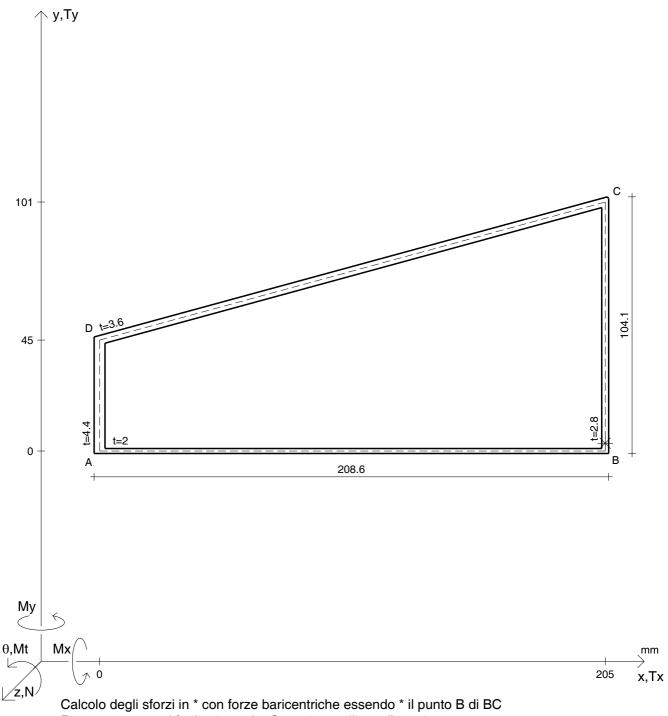

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 87800 N	M _x	= -1830000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3270000 Nmm	M_{v}	= -4780000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

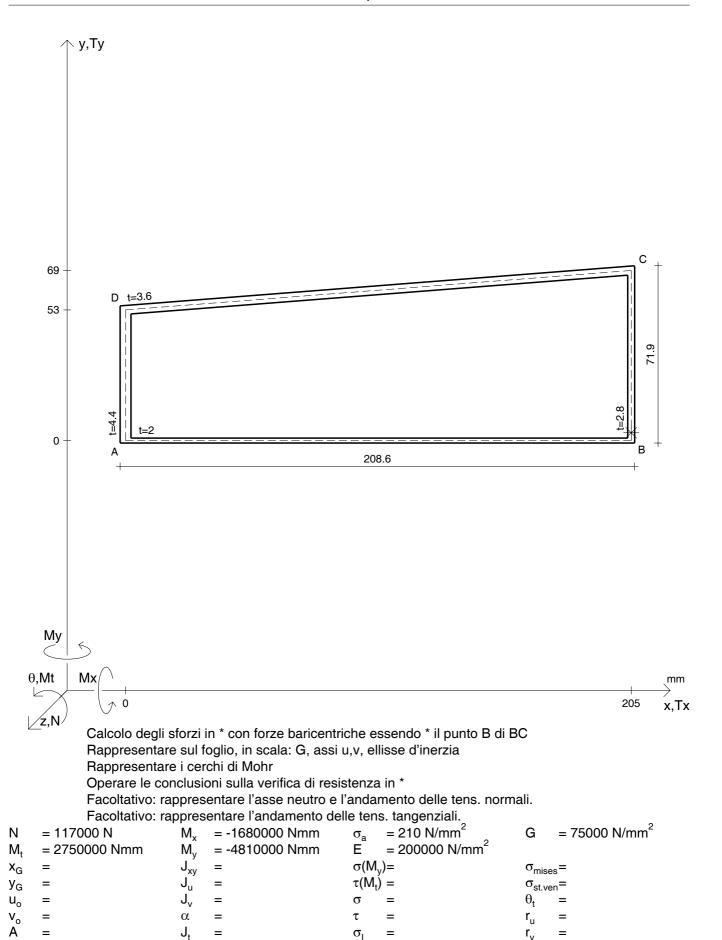

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 99900 N	M _×	= -2130000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 3840000 Nmm	M_{v}	= -3530000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

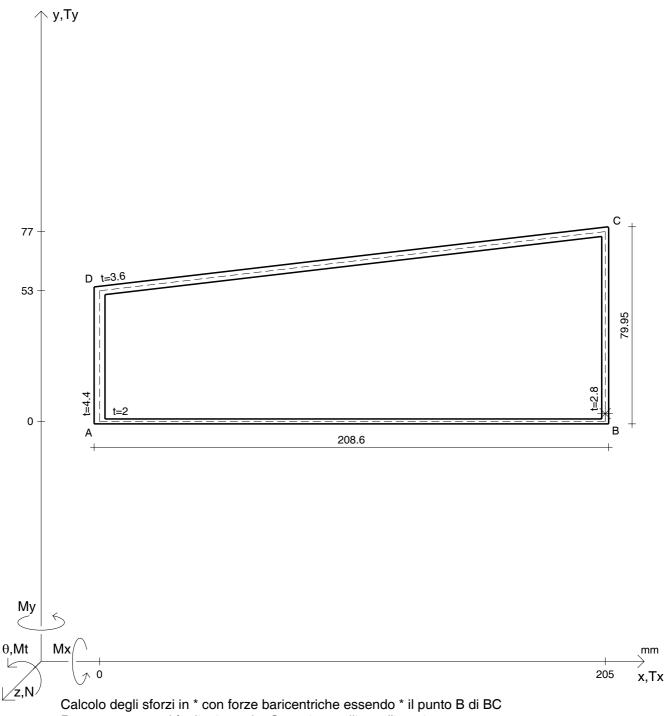

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 112000 N	M _x	= -1670000 Nmm	$\sigma_{\rm a}$	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 4450000 Nmm	M_{v}	= -3960000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

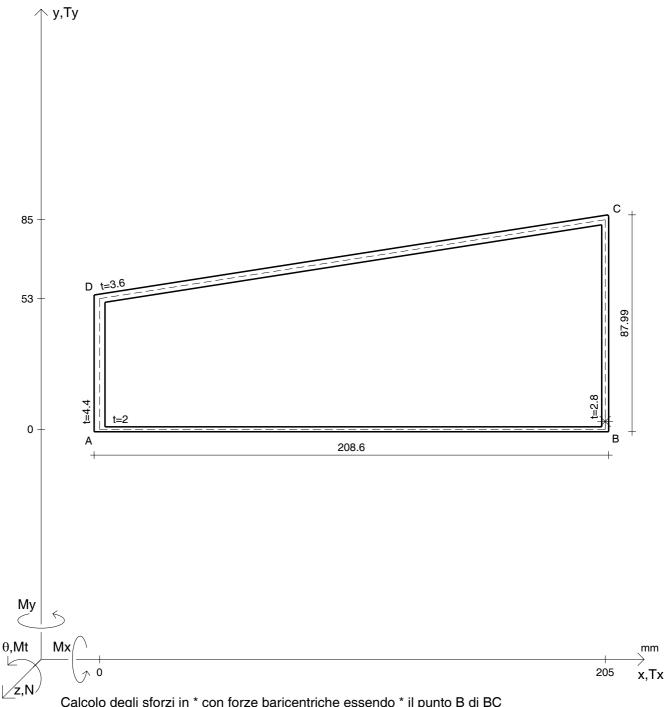


 σ_{II}

 $J_{yy} = \sigma(M_x) = \sigma_{tresc}$ @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

 $\sigma(N) =$

 J_{xx}


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

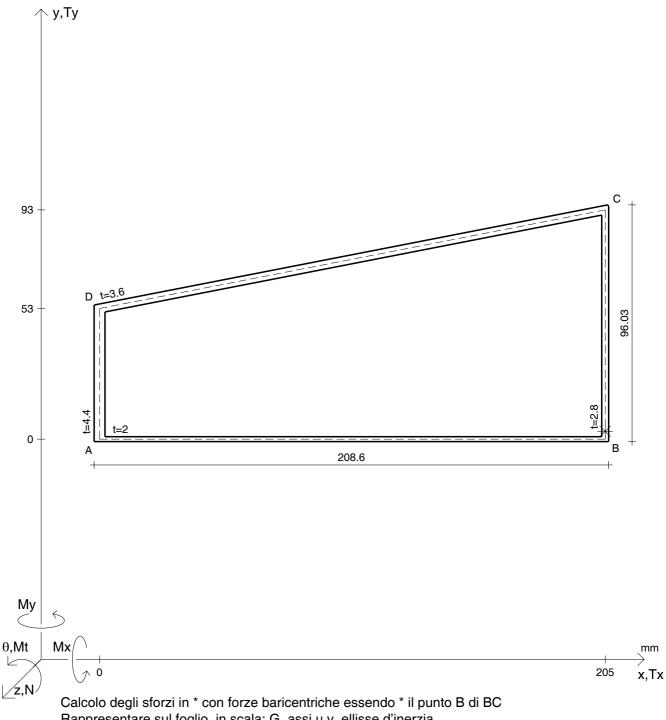
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 88100 N	M _×	= -1930000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3270000 Nmm	M_{v}	= -5230000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

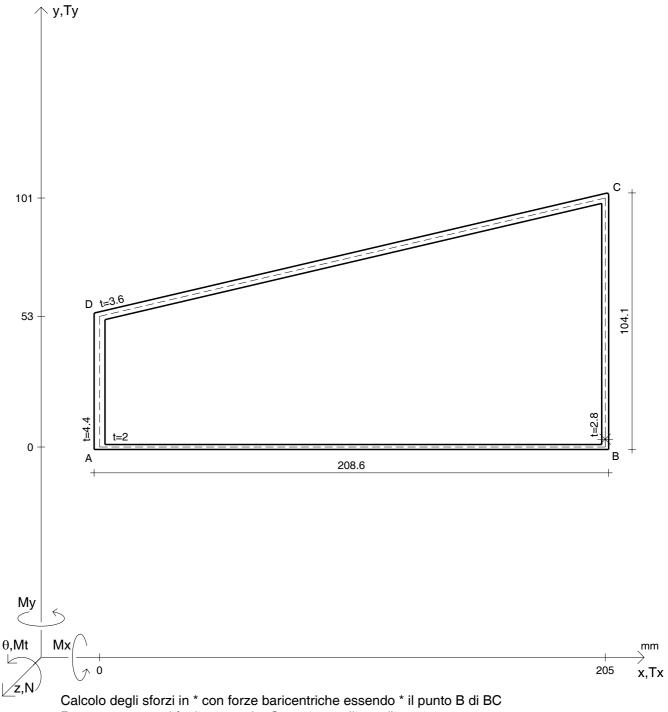

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 100000 N	M _x	= -2220000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3840000 Nmm	M_{v}	= -3840000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}			

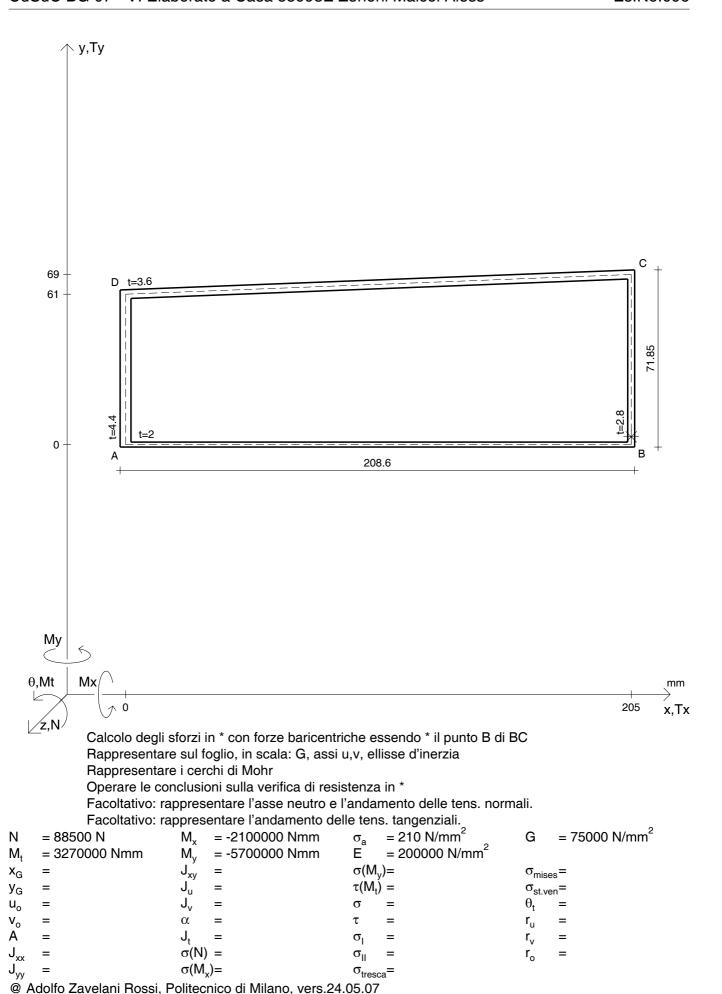

Rappresentare i cerchi di Mohr

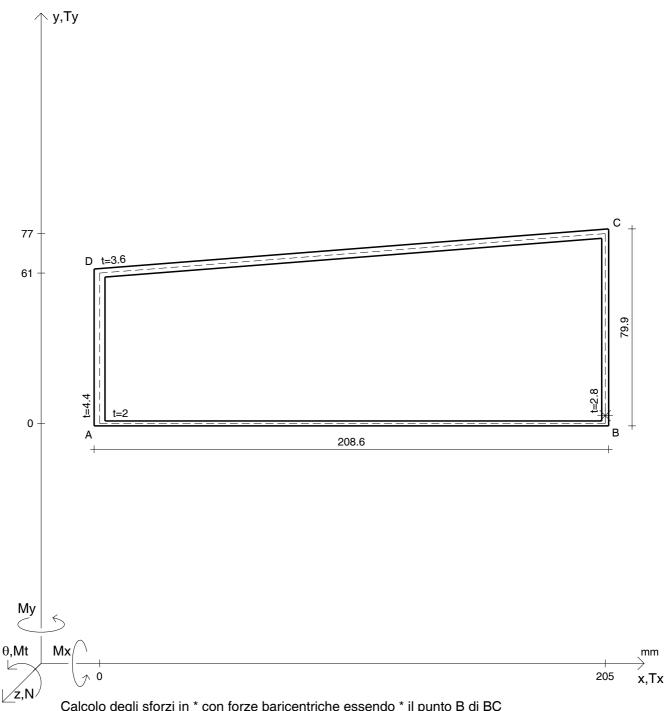
Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 112000 N	M _×	= -1730000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 4450000 Nmm	M_{v}^{γ}	= -4290000 Nmm		= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	ren=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		
@ A	dolfo Zavelani Rossi, F	Polited	nico di Milano, vers.24.	05.07	,		


Rappresentare i cerchi di Mohr


Operare le conclusioni sulla verifica di resistenza in *

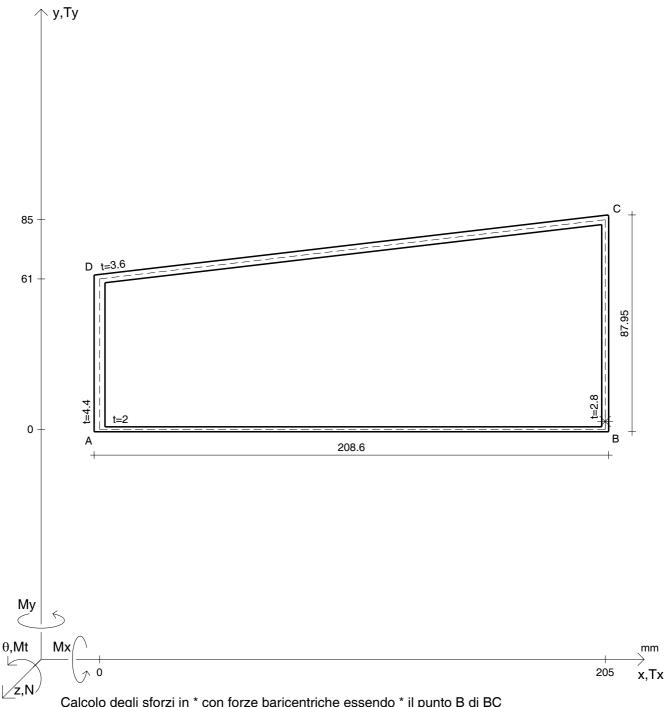
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 125000 N	M _×	= -2030000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3470000 Nmm	M_{v}	= -4740000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

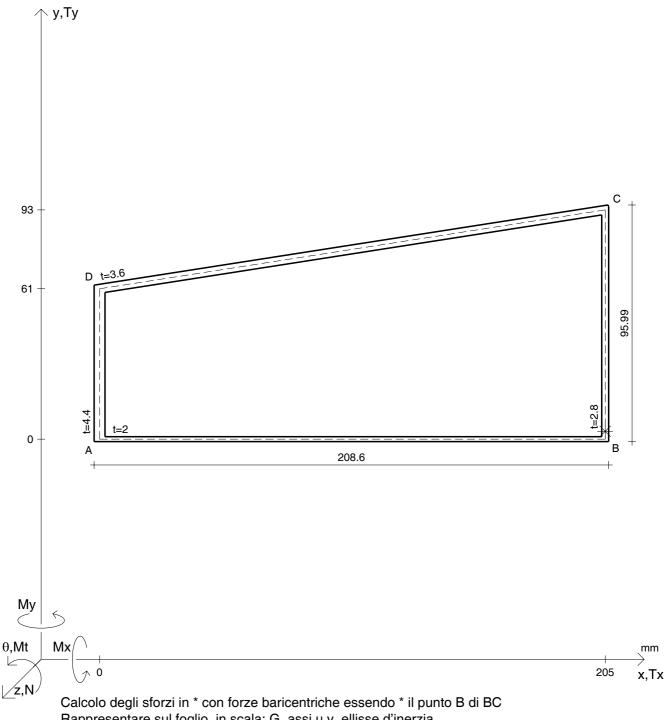
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 100000 N	M _×	= -2370000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²			
M_{t}	= 3840000 Nmm	M_{y}	= -4180000 Nmm	Ĕ	= 200000 N/mm ²					
x_{G}	=	J_{xy}	=	σ(M	<i>y</i> ·	σ_{mis}	ses=			
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{ren} =			
u_o	=	J_v	=	σ	=	θ_{t}	=			
V_{o}	=	α	=	τ	=	r_u	=			
Α	=	J_t	=	σ_{l}	=	r_{v}	=			
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=			
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =					
	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07									

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

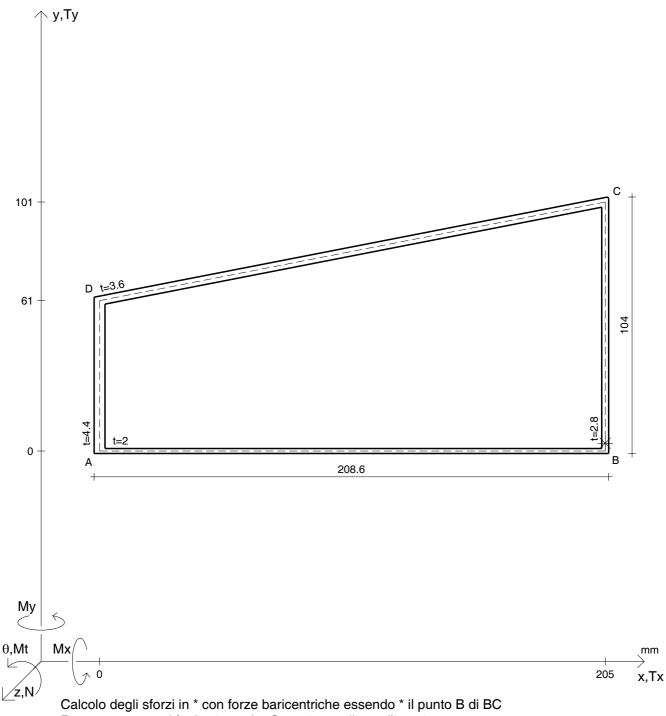

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 112000 N	M _×	= -1820000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 4450000 Nmm	M_{v}	= -4650000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

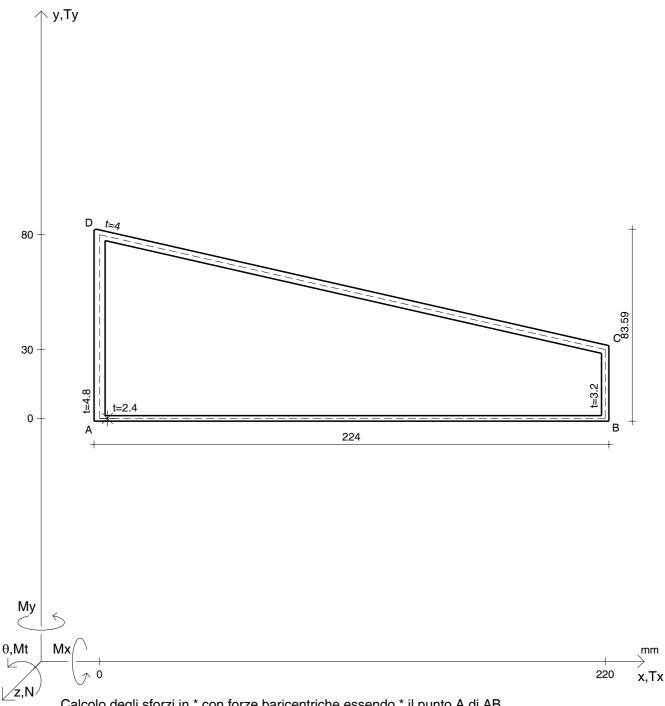

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 125000 N	M _×	= -2120000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²			
M_t	= 3470000 Nmm	M_{v}	= -5110000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$					
x_{G}	=	J_{xy}	=	σ(M	<i>y</i> ·	σ_{mis}	es=			
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	ren=			
u_o	=	J_v	=	σ	=	θ_{t}	=			
V_{o}	=	α	=	τ	=	r_u	=			
Α	=	J_t	=	σ_{l}	=	r_{v}	=			
J_xx	=	σ(N)) =	σ_{II}	=	r_{o}	=			
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =					
	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07									


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

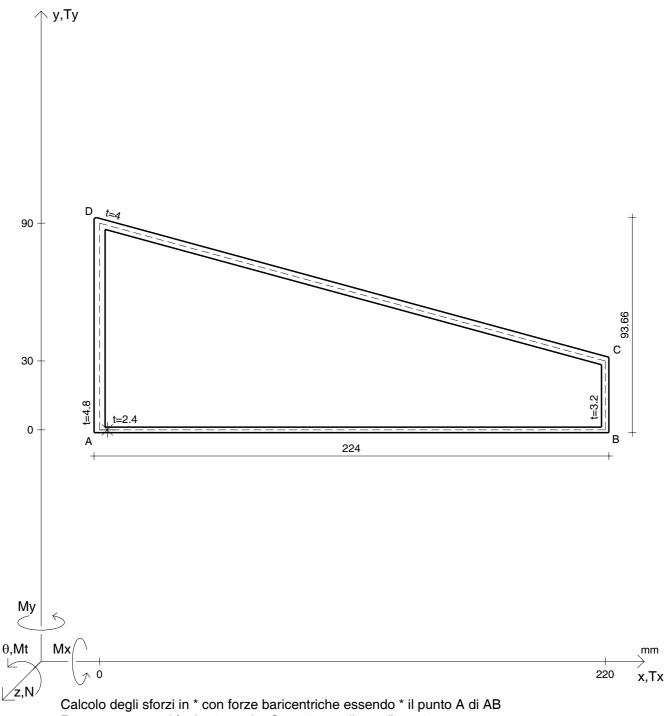
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 94200 N	M _x	= -2450000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 4080000 Nmm	M_{v}	= -5590000 Nmm	Ε	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$.) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

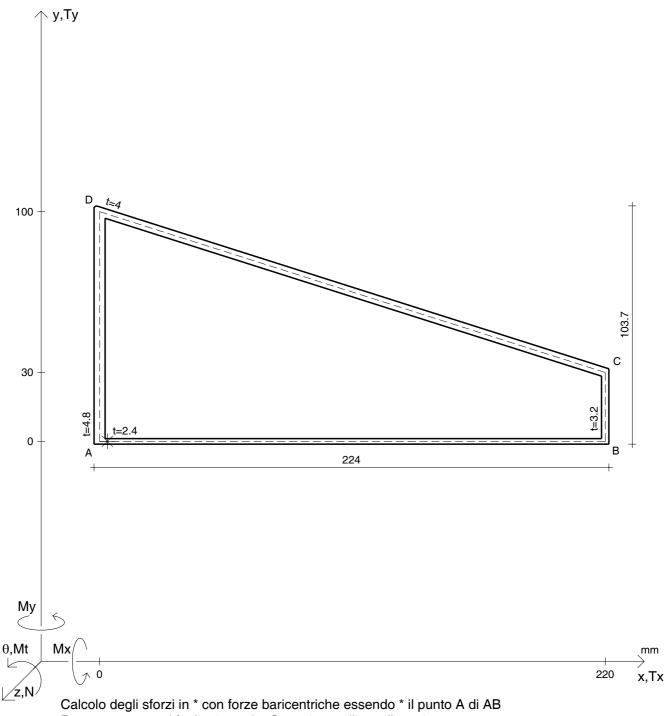

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 110000 N	M _×	= -2010000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3690000 Nmm	M_{v}	= 4160000 Nmm	E	$= 200000 \text{ N/mm}^2$		
\mathbf{x}_{G}	=	J_{xy}	=	σ(M		σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_1$	·) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

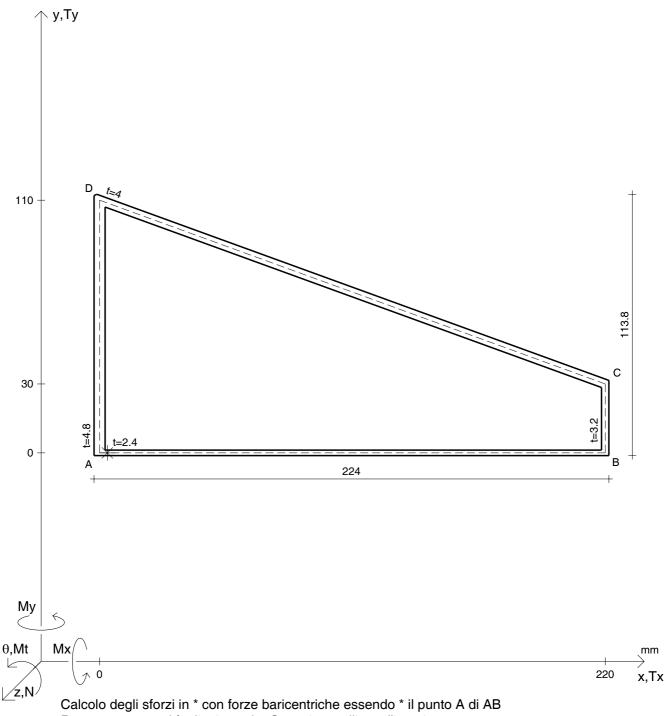

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 125000 N	M _x	= -1650000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 4410000 Nmm	M_{v}	= 4730000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

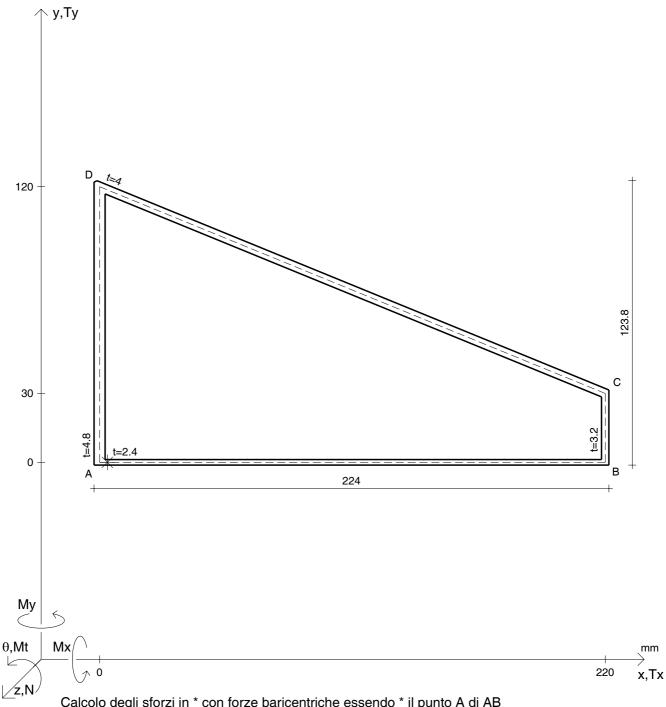

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 141000 N	M _x	= -2050000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
M_t	= 3530000 Nmm	M_{v}	= 5350000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.v}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

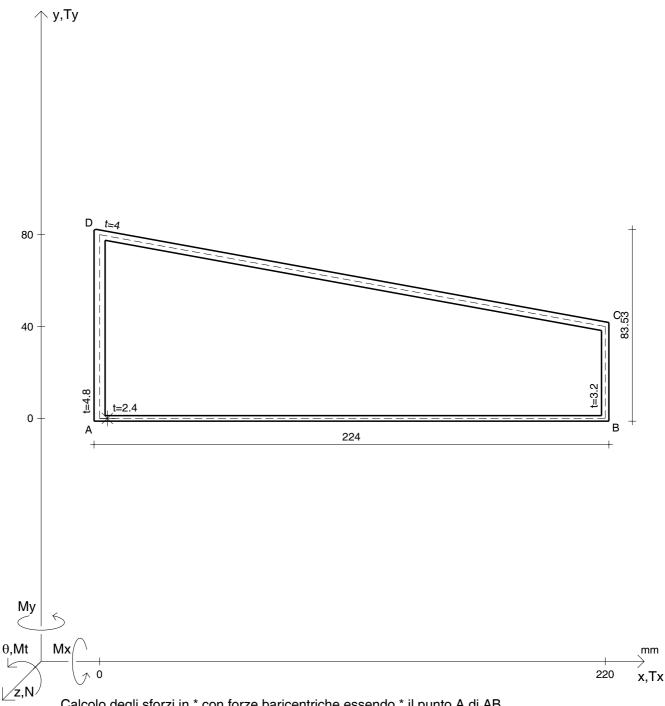
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 107000 N	M _x	= -2500000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 4250000 Nmm	M_{v}	= 6000000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

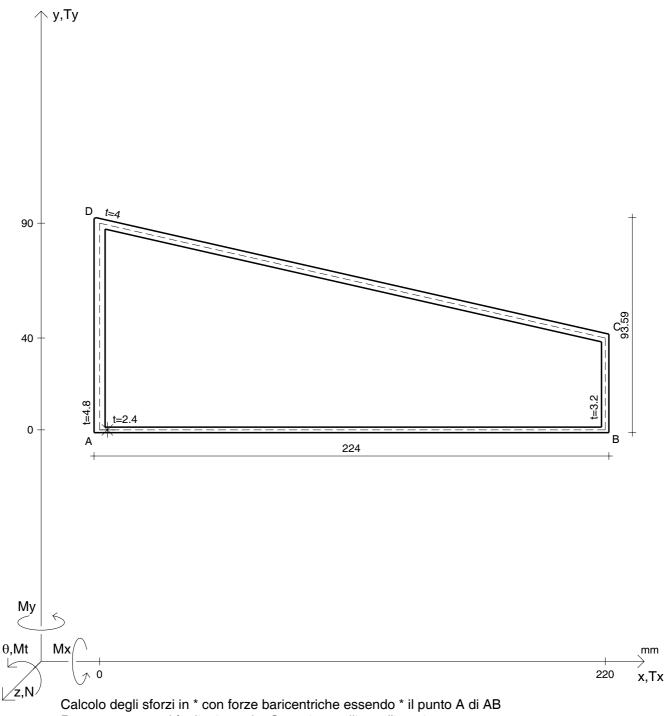
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 123000 N	M _×	= -3020000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 5040000 Nmm	M_{v}	= 4550000 Nmm	E			
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$	·) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N	,	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

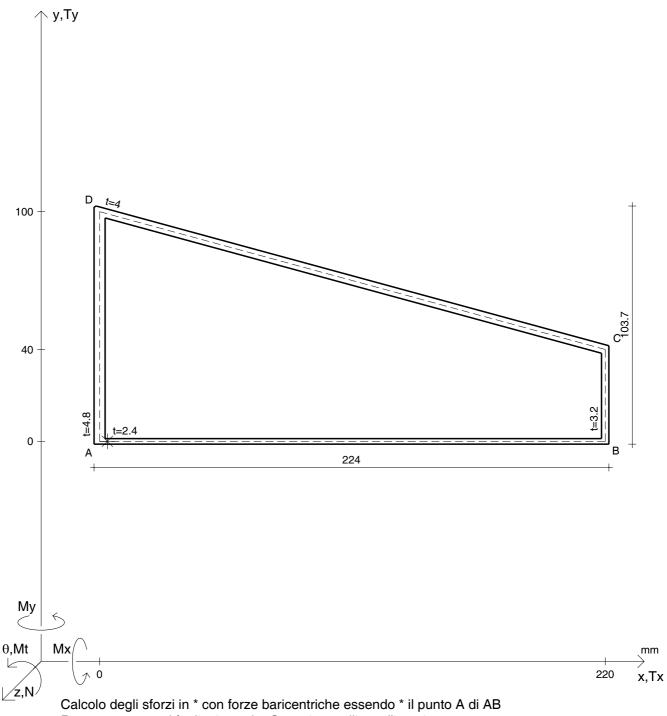

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 124000 N	M _x	= -1700000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 4470000 Nmm	M_{v}	= 5010000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

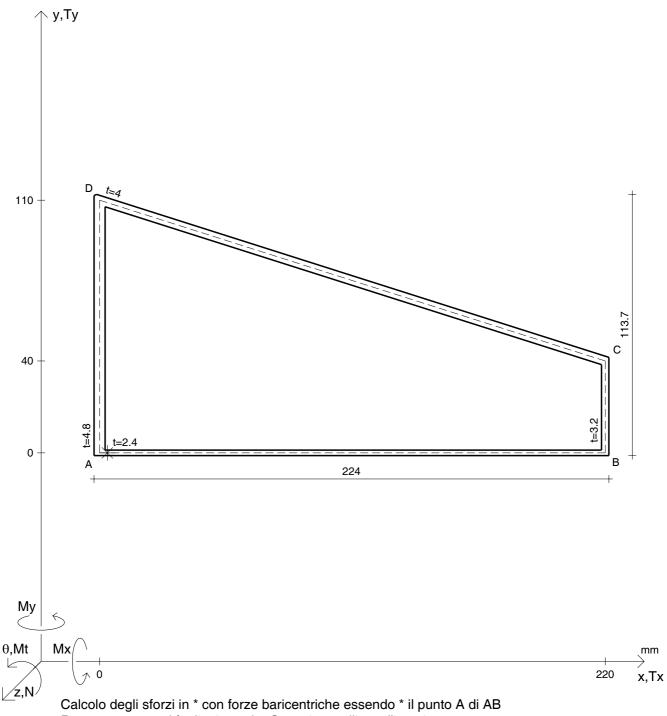

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 140000 N	M _x	= -2080000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
M_t	= 3570000 Nmm	M_{v}	= 5640000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ees=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

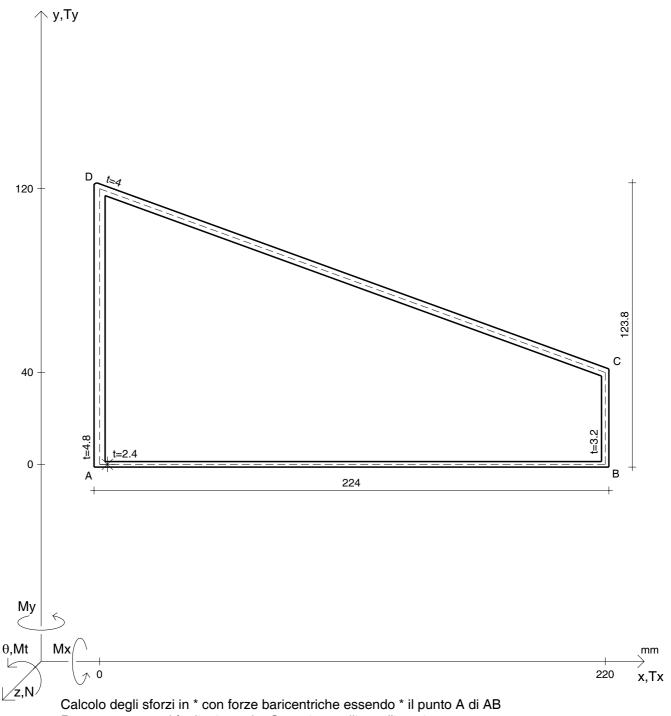

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 106000 N	M _x	= -2510000 Nmm	$\sigma_{\rm a}$	= 210 N/mm ²	G	= 75000 N/mm ²
M_t	= 4290000 Nmm	M_{v}	= 6310000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 122000 N	M _×	= -3000000 Nmm	σ_{a}	= 210 N/mm ²	G	= 75000 N/mm ²			
M_t	= 5080000 Nmm	M_{v}	= 4760000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$					
x_{G}	=	J_{xy}	=	σ(M	<i>y</i> ·	σ_{mis}	es=			
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	ren=			
u_o	=	J_v	=	σ	=	θ_{t}	=			
V_{o}	=	α	=	τ	=	r_u	=			
Α	=	J_t	=	σ_{I}	=	r_{v}	=			
J_xx	=	σ(N)) =	σ_{II}	=	r_{o}	=			
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =					
	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07									

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 138000 N	M _×	= -2410000 Nmm	σ_a	= 210 N/mm ²	G	= 75000 N/mm ²			
M_t	= 5930000 Nmm	M_y	= 5450000 Nmm	Ε̈́	= 200000 N/mm ²					
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=			
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{ren} =			
u_o	=	J_v	=	σ	=	θ_{t}	=			
V_{o}	=	α	=	τ	=	r_u	=			
Α	=	J_t	=	σ_{I}	=	r_{v}	=			
J_{xx}	=	σ(N) =	σ_{II}	=	r _o	=			
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=					
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07									