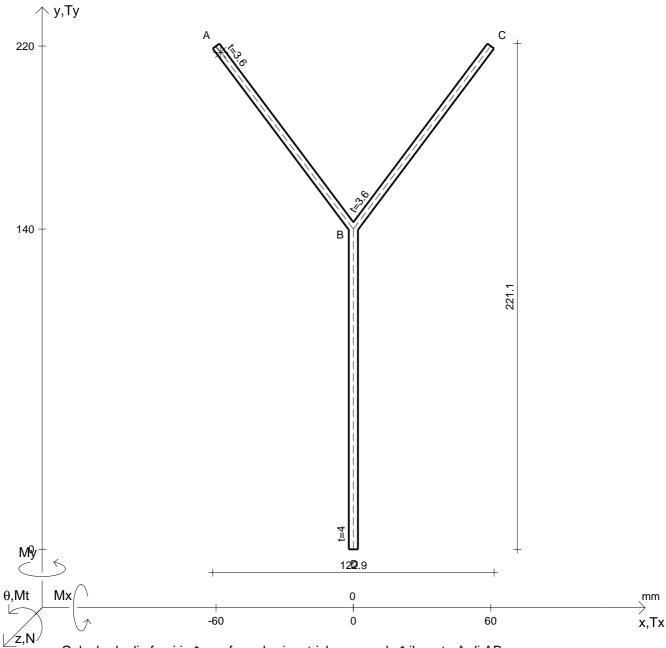

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 110000 N	M_{v}	= 1560000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 8770 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	= 76000 N/mm ²
y_G	=	$\sigma(M_y)$		σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_d$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_o	=
σ(N)	=	σ_{lls}	=	J_p	=
~				•	


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

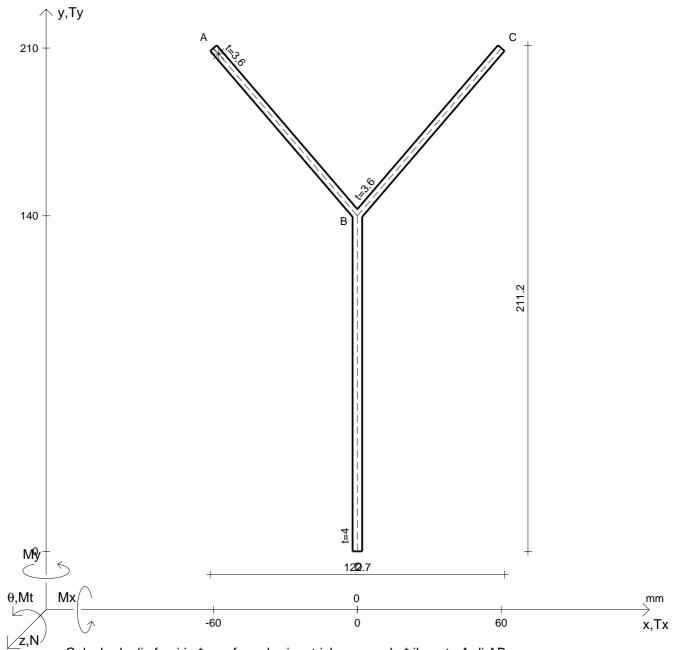
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 114000 N	M_{v}	= 1560000 Nmm	Ε	$= 200000 \text{ N/mm}^2$
T_x	= 5640 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
				-	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

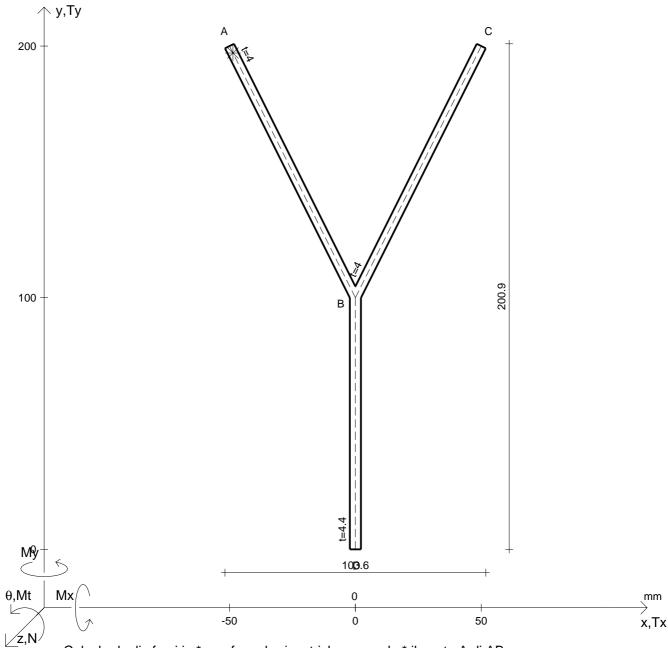

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 107000 N	M_{v}	= 2200000 Nmm	Е	$= 200000 \text{ N/mm}^2$
T_x	= 14000 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	= =	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_v	=	$ au_{d}$	=	r_v	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
_					


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 108000 N	M_{v}	= 1590000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x		$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A _.	=	$\tau(T_x)_s$	=	σ_{mises}	
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$		$\sigma_{\text{st.ven}}$	
C_{w}	=	σ	=	θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
$\sigma(N)$	=	σ_{IIs}	=	J_p	=
<u> </u>				•	

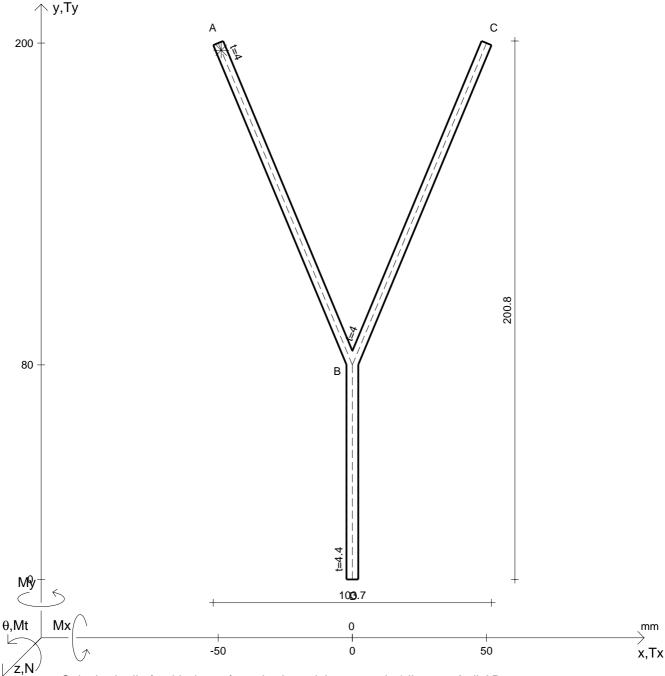

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 130000 N	M_{v}	= 1980000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 7860 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_v	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
<u> </u>					

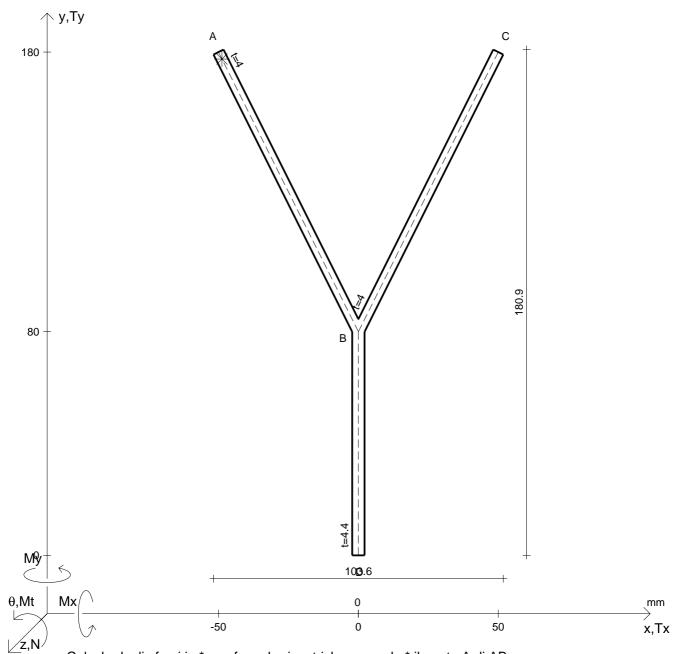

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= ا	102000 N	M_{v}	= 1970000 Nmm	E	$= 200000 \text{ N/mm}^2$
Т	_x =	15300 N	$\sigma_{\rm a}^{'}$	= 260 N/mm ²	G	= 76000 N/mm ²
У	' _G =		$\sigma(M_y)$		σ_{ld}	=
u	ı _o =		$\tau(T_{xc})$	=	σ_{IId}	=
٧			$\tau(T_{xb})_{c}$	₃ =	σ_{tresca}	=
S	٠ =		$\tau(T_x)_s$	=	σ_{mises}	=
S	S _v =		$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C	$C_{w} =$		σ	=	θ_{t}	=
J	l _u =		$ au_{s}$	=	r_u	=
J	l _v =		$ au_{\sf d}$	=	r_{v}	=
J	l _t =		$\sigma_{\sf ls}$	=	r_o	=
O	$\sigma(N) =$		$\sigma_{\sf lls}$	=	J_{p}	=
,	~ ^ · · · ·			44.05.44		


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

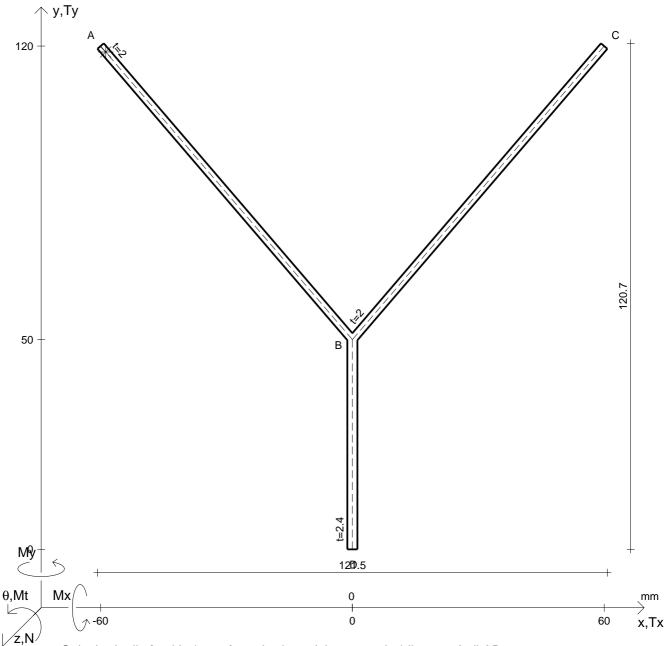
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 117000 N	M _v	= 1970000 Nmm	Е	= 200000 N/mm ²		
T_x	= 5400 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	= 76000 N/mm ²		
y_G	=	J_t	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$, =
u_o	=	σ(N)	=	$ au_d$	=	Θ_{t}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{ls}	=	r_u	=
$A_{_{\star}}$	=	$\tau(T_{xc})$	=	σ_{IIs}	=	r_{v}	=
$S_{v}^{^{\star}}$	=	$\tau(T_{xb})$		σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_x)_s$	=	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_x)_c$	₁ =	$\sigma_{ ext{tresca}}$	<u> </u>		
J_{v}	=	σ	=	σ_{mises}	; =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

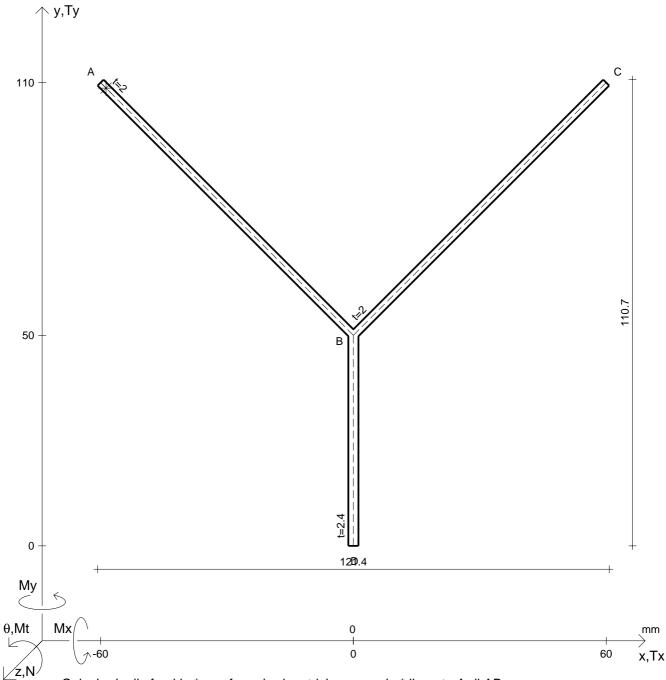

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 117000 N	M_{v}	= 1920000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 5450 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	= 76000 N/mm ²
y_G	=	$\sigma(M_y)$		σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_0	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_w	=	σ	=	Θ_{t}	=
J_{u}	=	τ_{s}	=	r_u	=
J_{v}	=	$\boldsymbol{\tau}_{d}$	=	r_{v}	=
J _t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{lls}	=	J_{p}	=
\sim \sim 1			440=44		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

17.06.11

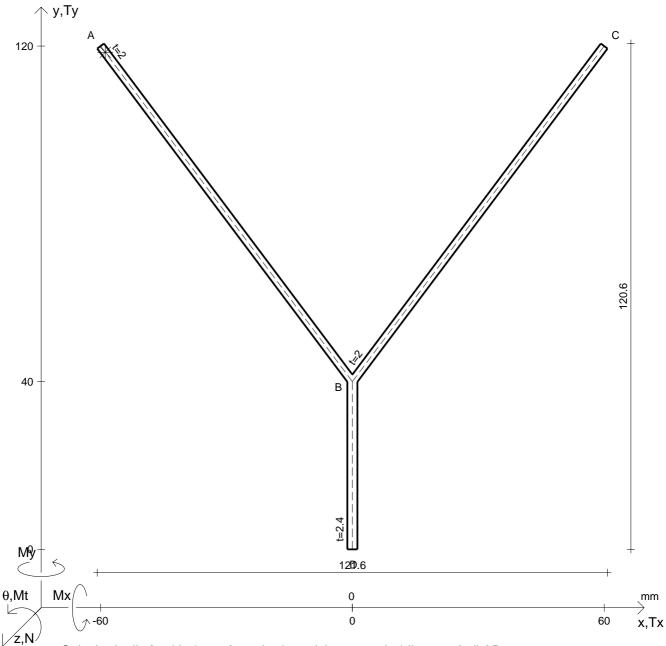

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 37000 N	M_{v}	= 1020000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 1560 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	= 76000 N/mm ²
y_G	=	$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α,	=	$\tau(T_x)_s$		σ_{mises}	=
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_{u}	=	τ_{s}	=	r_u	=
J_{v}	=	$ au_{\sf d}$	=	r_{v}	=
J _t	=	σ_{ls}	=	r _o	=
σ(N)		σ_{IIs}	=	J_p	=


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i dooilativo. id	ppicoc	intare randamente dei	ic torio	. tarigorizian.		
Ν	= 38700 N	M_{v}	= 772000 Nmm	E	= 200000 N/mm ²		
T_x	= 2110 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	= 76000 N/mm ²		
y_{G}	=	J_t	=	$ au_{s}$	=	$\sigma_{\text{st.ver}}$, =
u_{o}	=	σ(N)		$ au_{d}$	=	Θ_{t}	=
V_{o}	=	$\sigma(M_y)$		σ_{ls}	=	r_u	=
A _*	=	$\tau(T_{xc})$	=	σ_{IIs}	=	r_{v}	=
$S_v^{^\star}$	=	$\tau(T_{xb})$	d=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_x)_s$, =	σ_{IId}	=	J_{p}	=
J_u	=	$\tau(T_x)_c$	₁ =	σ_{tresca}	, =	-	
J_{v}	=	σ	=	σ_{misos}	=		

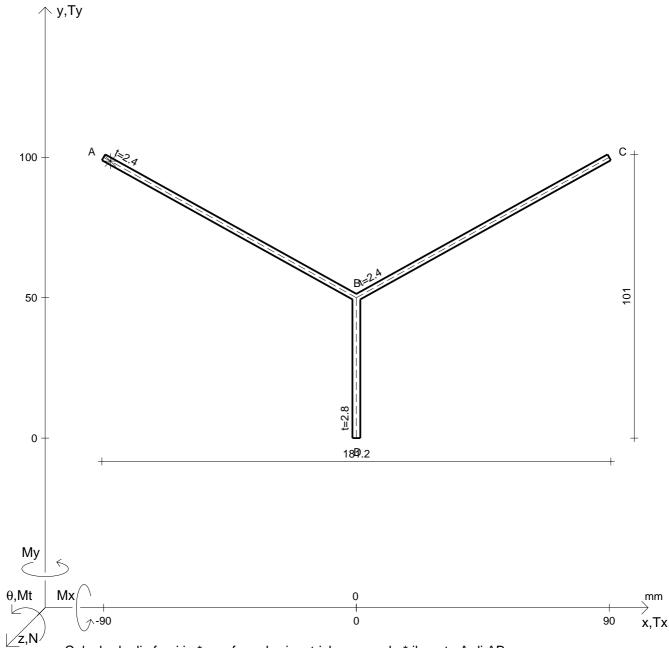
Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 46000 N	M_{v}	= 1010000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 999 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G	=	$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_0	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A _*	=	$\tau(T_x)_s$	=	σ_{mises}	=
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_{u}	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J _t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{lls}	=	J_p	=


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

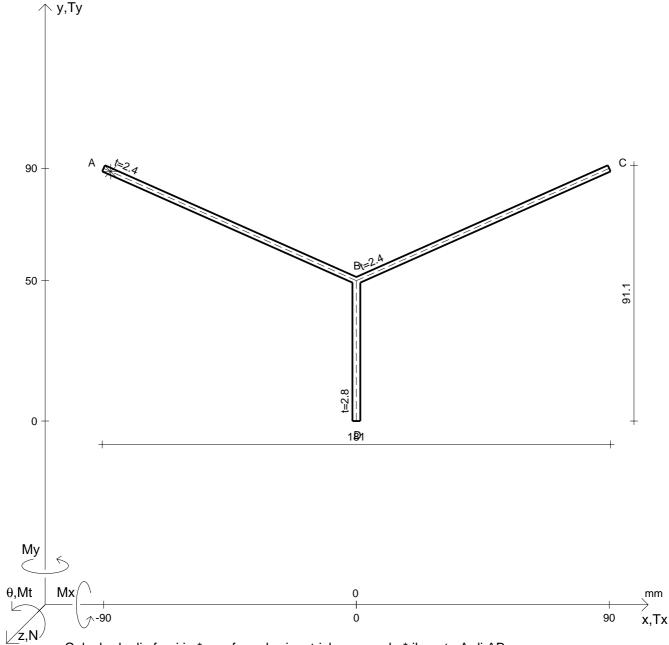
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 35200 N	M_{v}	= 1020000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 1250 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G	=	$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A _*	=	$\tau(T_x)_s$	=	σ_{mises}	=
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
<u> </u>				•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

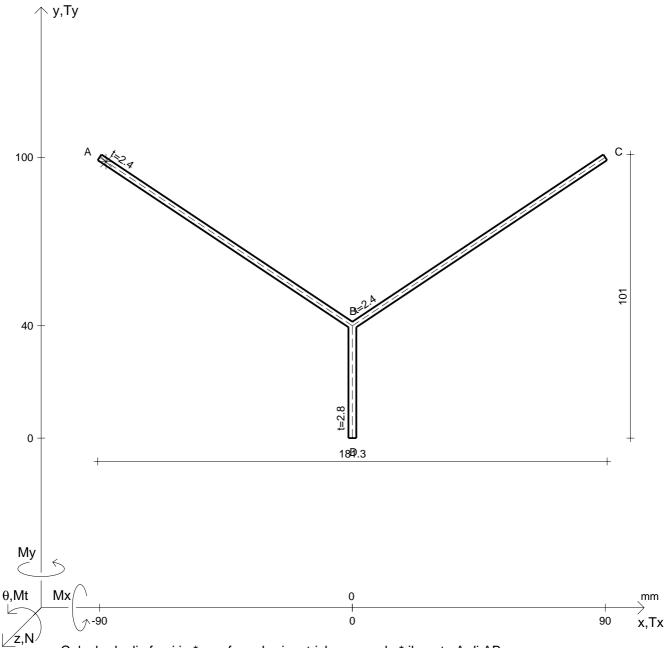

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 52900 N	M_{v}	= 1670000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 3860 N	$\sigma_{a}^{'}$	= 260 N/mm ²	G	$= 76000 \text{ N/mm}^2$
y_G	=	$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	_d=	σ_{tresca}	=
A _.	=	$\tau(T_x)_s$, =	σ_{mises}	=
A S _v	=	$\tau(T_x)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_{u}	=	τ_{s}	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
_ ^			44.05.44	•	

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

17.06.11


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

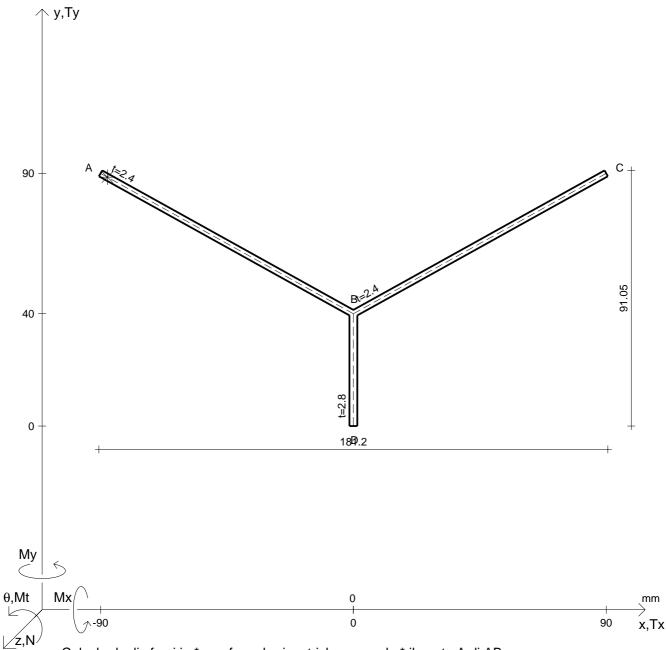
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 56600 N	M_{v}	= 1780000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 4340 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	= 76000 N/mm ²
y_G	=	$\sigma(M_y)$		σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A _*	=	$\tau(T_x)_s$, =	σ_{mises}	=
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
C_w	=	σ	=	Θ_{t}	=
J_u	=	τ_{s}	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	$\sigma_{\sf ls}$	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
~ • •					

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

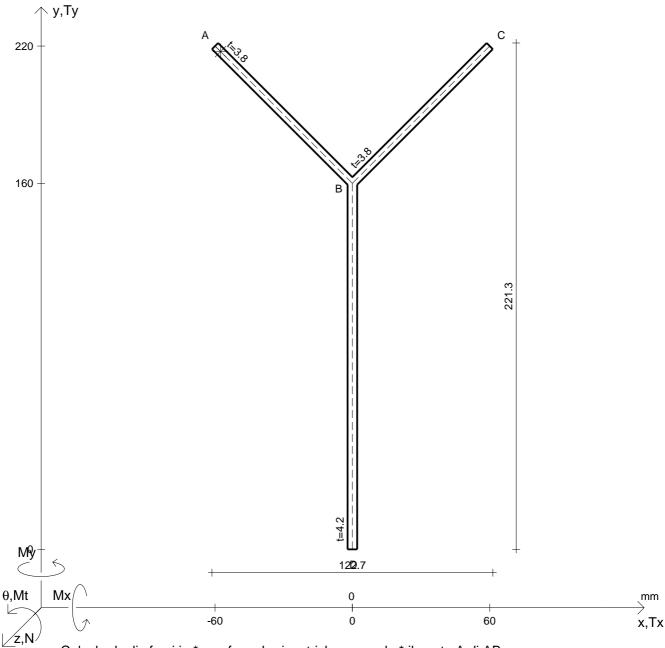

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 47400 N	M_{v}	= 2140000 Nmm	Е	$= 200000 \text{ N/mm}^2$
T_x	= 2270 N	$\sigma_{a}^{'}$	= 260 N/mm ²	G	= 76000 N/mm ²
y_G	=	$\sigma(M_y)$		σ_{ld}	=
u_{o}	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A _*	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_{v}^{*}	=	$\tau(T_x)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_u	=	τ_{s}	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
_					

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

17.06.11

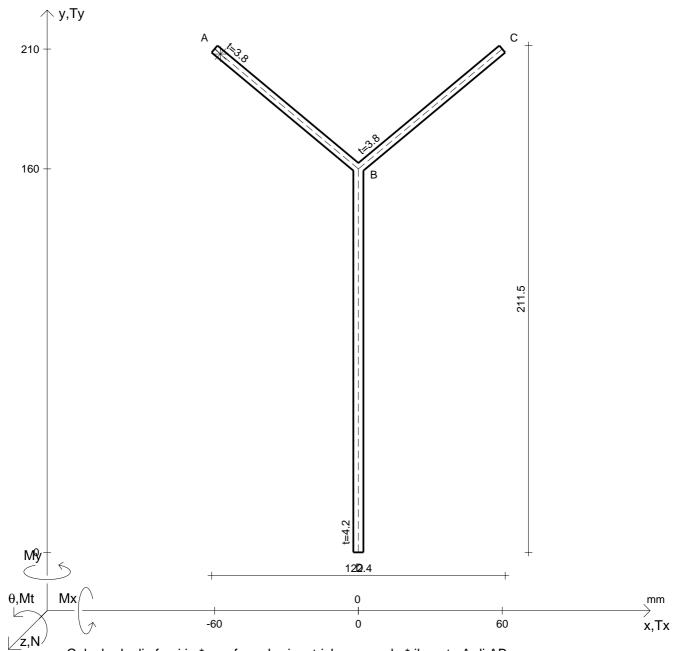

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 50600 N	$M_{v} =$	= 1670000 Nmm	Ε	$= 200000 \text{ N/mm}^2$
T_x	= 3050 N	$\sigma_a' =$	= 260 N/mm ²	G	= 76000 N/mm ²
y_{G}	=	$\sigma(M_y) =$		σ_{ld}	=
u_o	=	$\tau(T_{xc}) =$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})_d =$	=	σ_{tresca}	=
A _*	=	$\tau(T_x)_s =$	=	σ_{mises}	=
A S _v	=	$\tau(T_x)_d =$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ =	=	θ_{t}	=
J_u	=	$\tau_s =$	=	\mathbf{r}_{u}	=
J_v	=	$\tau_{d} =$	=	r_v	=
J_t	=	σ_{ls} =	=	r_{o}	=
σ(N)	=	σ_{IIs} =	=	J_p	=
<u> </u>					

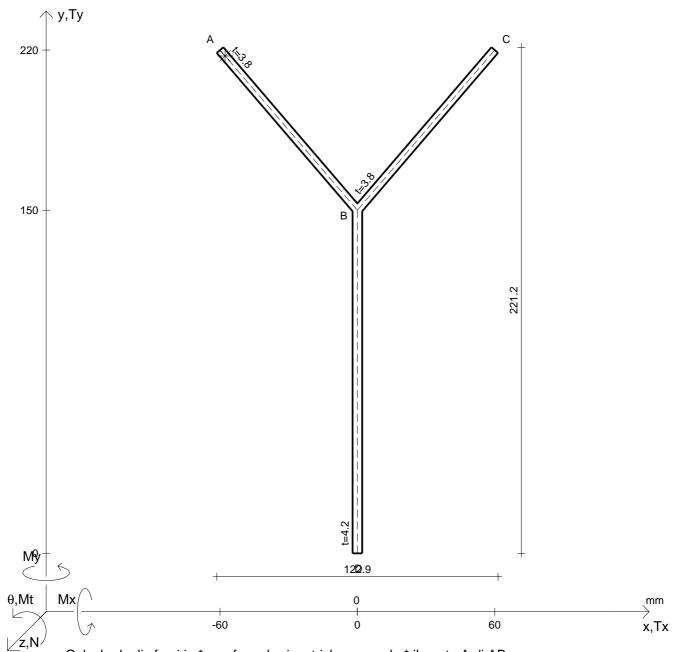

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 123000 N	M_{v}	= 1640000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x		$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A _*	=	$\tau(T_x)_s$	=	σ_{mises}	
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
<u> </u>					


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

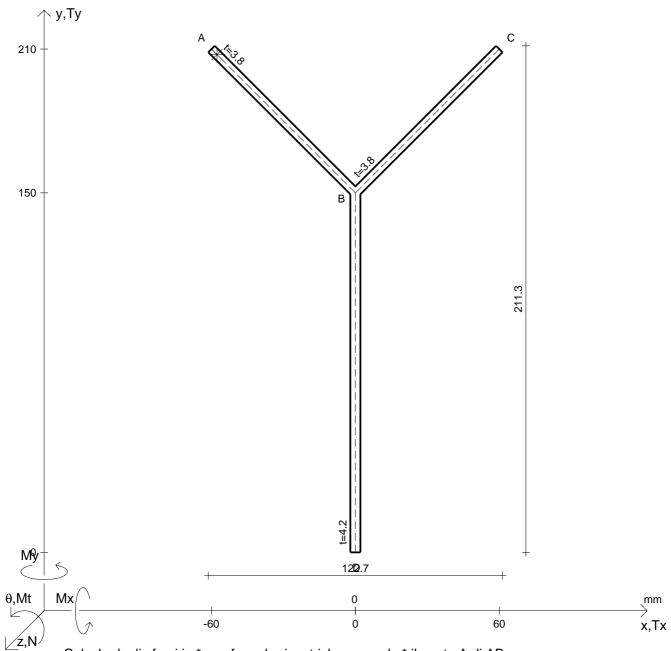
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 95800 N	M_{v}	= 1640000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x		$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A _*	=	$\tau(T_x)_s$	=	σ_{mises}	
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$		$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
<u> </u>					

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

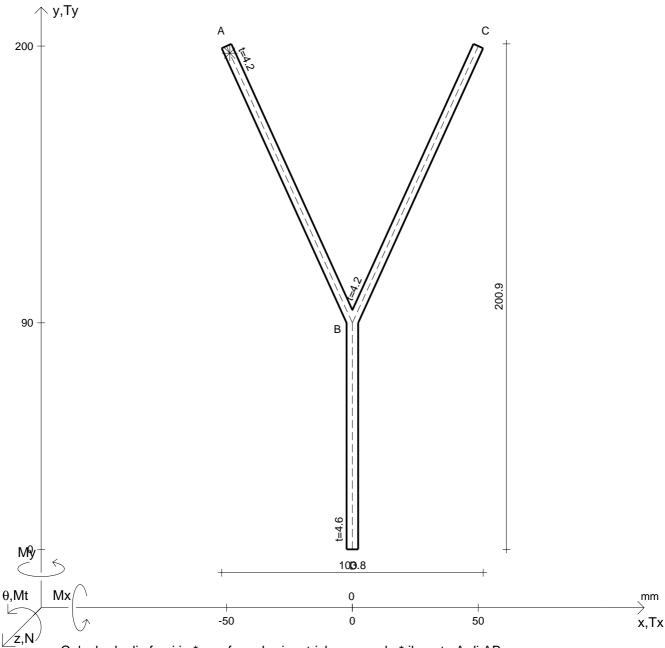

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 116000 N	M_{v}	= 1650000 Nmm	Е	$= 200000 \text{ N/mm}^2$
T_x	= 9670 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
_					

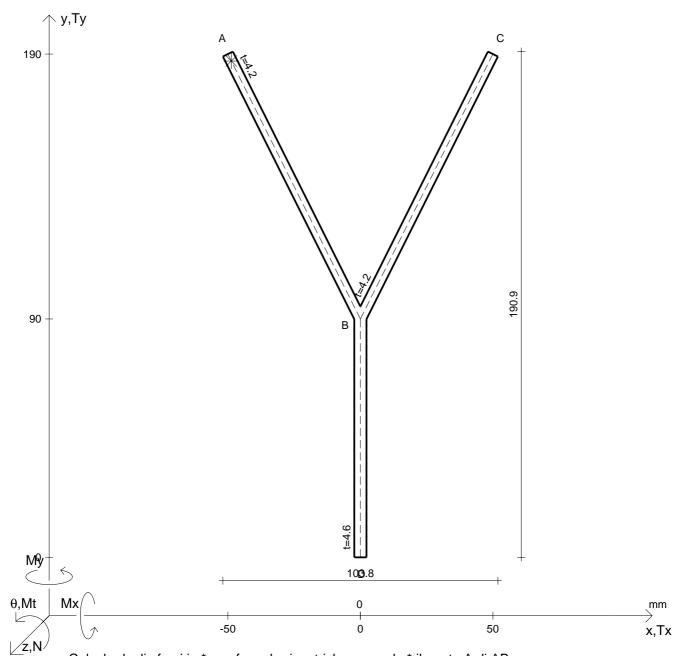

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 120000 N	M_{v}	= 1660000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 6230 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_{o}	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	= =	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=

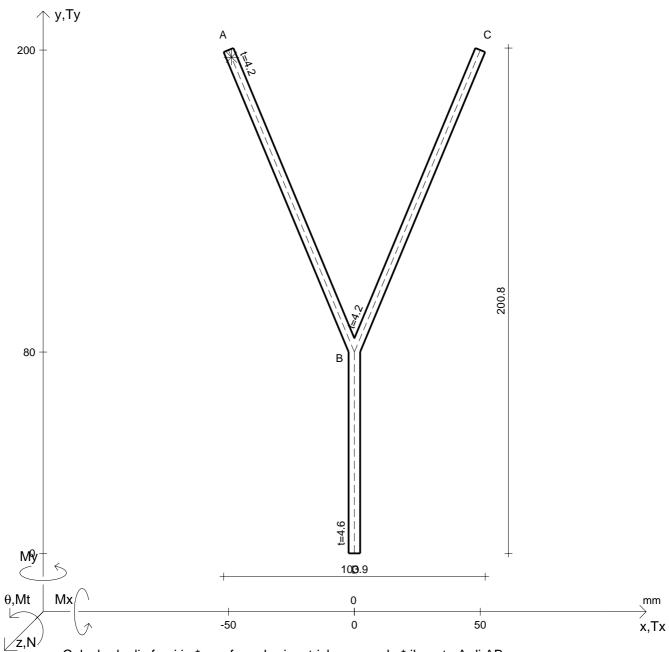

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 111000 N	M_{v}	= 2410000 Nmm	Е	$= 200000 \text{ N/mm}^2$
T_x	= 6800 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	= =	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_v	=	$ au_{d}$	=	r_v	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
_					


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 118000 N	M_{v}	= 1840000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 8590 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=

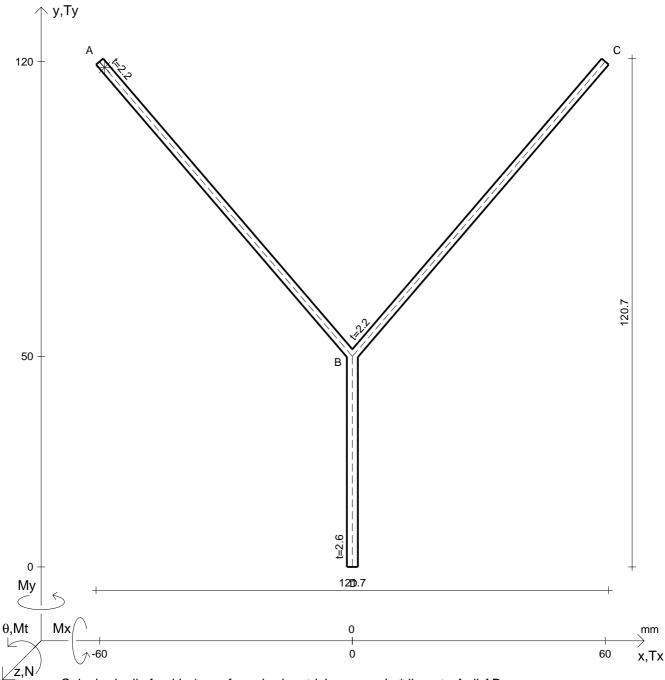

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 136000 N	M_{v}	= 2310000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 4820 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
<u> </u>				•	

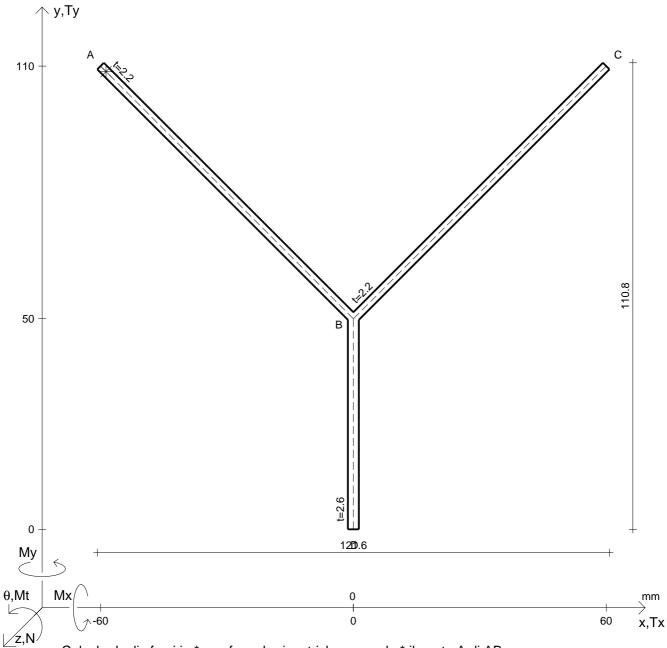

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 106000 N	M_{v}	= 2380000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 5880 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	= =	σ_{tresca}	=
A S _v	=	$\tau(T_x)_s$	=	σ_{mises}	=
S_v	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_v	=	$ au_{d}$	=	r_v	=
J_t	=	σ_{ls}	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
_					


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

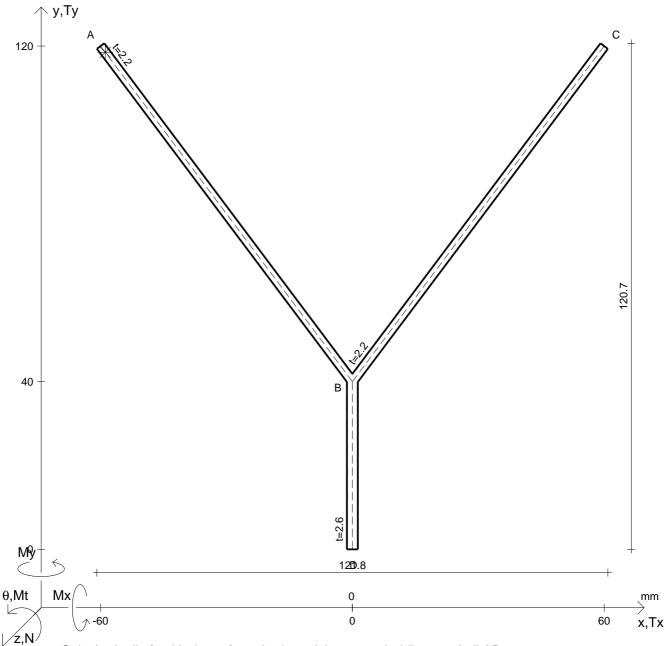
Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 44900 N	 М _v	= 918000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
T_x	= 2050 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	= 76000 N/mm ²		
y_{G}	=	J_t	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
u_o	=	σ(N)		$ au_{d}$	=	θ_{t}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{ls}	=	r_u	=
A _*	=	$\tau(T_{xc})$	=	σ_{IIs}	=	r_{v}	=
$S_v^{^\star}$	=	$\tau(T_{xb})$		σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_x)_s$	=	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_x)_c$	₁ =	$\sigma_{ ext{tresca}}$	_a =	·	
J_v	=	σ	=	σ_{mises}	, =		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

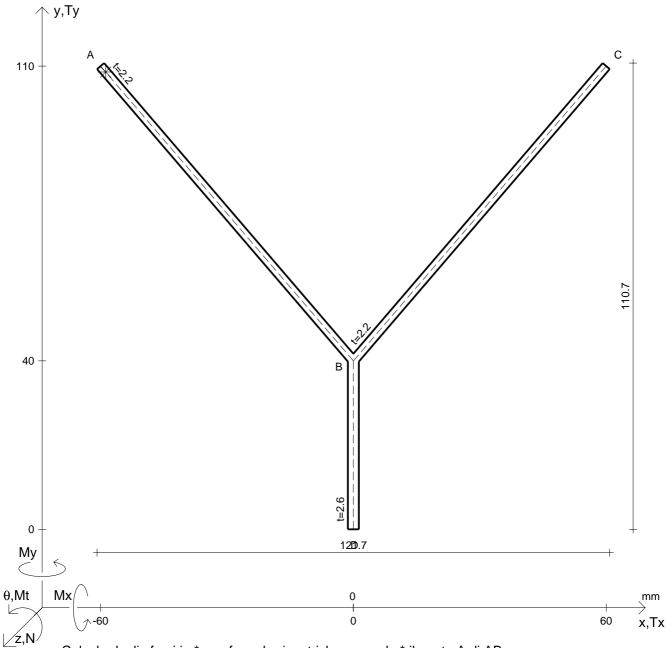

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 46400 N	M_{v}	= 939000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 2050 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G		$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_0	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
A _*	=	$\tau(T_x)_s$	=	σ_{mises}	=
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_{u}	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J _t	=	$\sigma_{\sf ls}$	=	r _o	=
σ(N)	=	σ_{IIs}	=	J_p	=

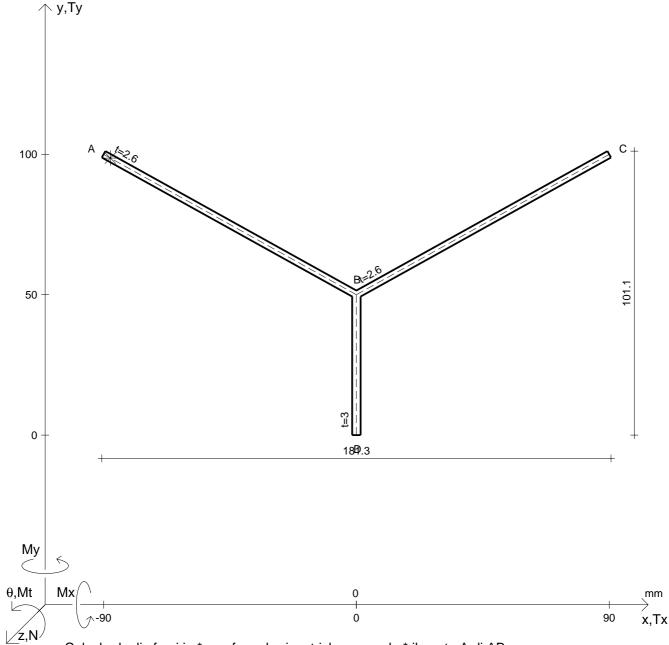

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 41000 N	M_{v}	= 1210000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 1330 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G	=	$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_0	=	$\tau(T_{xb})$		σ_{tresca}	=
A _*	=	$\tau(T_x)_s$	=	σ_{mises}	=
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_{u}	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{\sf d}$	=	r_{v}	=
J _t	=	$\sigma_{\sf ls}$	=	r_{o}	=
σ(N)	=	σ_{lls}	=	J_p	=

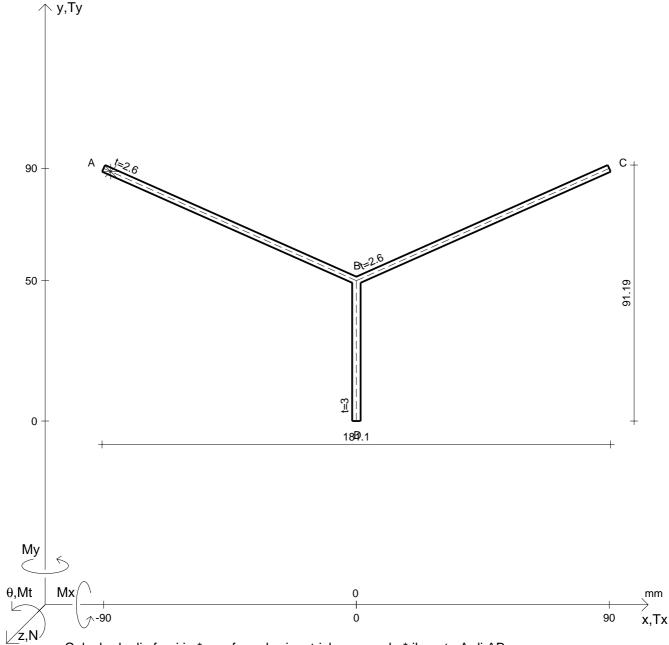

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 42700 N	M_{v}	= 918000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 1650 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
y_G	=	$\sigma(M_y)$		σ_{ld}	=
u_{o}	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_0	=	$\tau(T_{xb})$		σ_{tresca}	=
Α,	=	$\tau(T_x)_s$	=	σ_{mises}	=
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	θ_{t}	=
J_{u}	=	$ au_{s}$	=	r_u	=
J_{v}	=	$ au_{d}$	=	r_{v}	=
J _t	=	$\sigma_{\sf ls}$	=	r _o	=
σ(N)	=	σ_{lls}	=	J_p	=


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 62700 N	M_{v}	= 2000000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 3670 N		= 260 N/mm ²	G	= 76000 N/mm ²
y_G	=	$\sigma(M_y)$	=	σ_{Id}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})_c$	d=	σ_{tresca}	=
Α,	=	$\tau(T_x)_s$	=	σ_{mises}	
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_u	=	$ au_{s}$	=	r_u	=
J_v	=	τ_{d}	=	r_{v}	=
J_t	=	$\sigma_{\sf ls}$	=	r_{o}	=
σ(N)	=	σ_{IIs}	=	J_p	=
∧		1. 8 4.1	44.05.44		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 50200 N	M_{v}	= 2130000 Nmm	E	$= 200000 \text{ N/mm}^2$
T_x	= 5520 N	$\sigma_{a}^{'}$	$= 260 \text{ N/mm}^2$	G	= 76000 N/mm ²
y_G	=	$\sigma(M_y)$		σ_{ld}	=
u_o	=	$\tau(T_{xc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{xb})$	d=	σ_{tresca}	=
Α,	=	$\tau(T_x)_s$	=	σ_{mises}	=
$S_{v}^{^{\star}}$	=	$\tau(T_x)_d$	=	$\sigma_{\text{st.ven}}$	=
C_{w}	=	σ	=	Θ_{t}	=
J_{u}	=	τ_{s}	=	r_u	=
J_{v}	=	$ au_{\sf d}$	=	r_{v}	=
J _t	=	σ_{ls}	=	r _o	=
σ(N)	=	σ_{IIs}	=	J_p	=
\sim					

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

17.06.11