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The representation problem of pairs of symmetric
second-order tensors in the context of Solid Mechanics

Miguel A. Barja, Ignacio Carol, Francesc Planas-Vilanova, Egidio Rizzi

1 Introduction

This paper deals with the problem of determine a basis of invariants for a pair of symmetric
second-order tensors in the context of solid mechanics, sometimes referred as representation
theorems. We have restricted ourselves to the particular case of pairs of 3 x 3 real symmetric
matrices, although some of the results here could be thought in a more general setting.

Much is known and written in this area (see, for instance, [2], [3], [8], [9] and the
references therein). Our aim here is to approach in a slight different way by focussing our
attention on the set of similarity classes of pairs of 3 X 3 real symmetric matrices, what we
have called SP(3) (see Section 2 for the precise definitions). In this sense, our first result,
Theorem 3.1, states that anisotropic second-order valued functions are the functions defined
on SP(3) and gives a new proof that the three plus three direct invariants tr(A4), tr(A42),
tr(A3%) and tr(B), tr(B?), tr(B3) and the four mixed invariants tr(AB), tr(42B), tr(AB?),
tr(A%2B?) completely determine the similarity class of the pair of second-order tensors (A4, B).
Moreover, we provide an example, that not any single trace of the ten is superfluous. Once
we have seen the relevance of SP(3) in this context, we give a parametrization of it, closely
connected to the eigenvalues of the tensors and the Euler Angles relating the principal axes
of them. This is Theorem 4.4. Using this parametrization we suggest a physical meaning to
the mixed invariants and give a constructive way to build a pair of symmetric second-order
tensors from its standard ten traces. Later we prove what we consider the third main result
of the paper, Theorem 6.5: any set of nine anisotropic second-order valued functions, six
of them independent of the relative position of the principal axes, do not determine their
similarity class. This would explain why the six direct traces plus three mixed are not a
basis of invariants.

The paper is organized as follows. In Section 2, we introduce most of the notations
and definitions that will be needed on the paper. This is clearly tedious but has the
advantage of facilitating the subsequent reading. The main subject of the paper is presented
in Section 3. Section 4 is devoted to provide a parametrization of SP(3) in terms of
orthostocastic matrices and next one puts its emphasis on the properties of doubly stochastic
and orthostocastic matrices. Section 6 exploits all the properties and results presented in the
former sections. Finally, Section 7 centers its attention on relationships among invariants.

2 Notations and preliminaries

To allow a further easier reading, we concentrate some notations in this section (see, for
instance, [4]) so the reader may consult them if necessary.



All matrices we consider will be n x n real matrices unless specified to the contrary. The
subset of all non-singular matrices is called the linear group and will be denoted by GL,,(R).
Two matrices A and B connected by the relation B = S~'AS, where S is a non-singular
matrix, are called similar. Two pairs of matrices (A4, B) and (C,D) are called similar if
there exists a non-singular matrix S such that C = S™'AS and D = S~!BS. Given a pair
(A, B), its similarity class will be denoted by [(4, B)].

The subgroup of GL,(R) of matrices whose inverse coincide with their transpose is called
the orthogonal group and will be denoted by O(n). A real matrix that coincides with its
transpose is called a symmetric matrix. The set of all n X n symmetric matrices will be
denoted by Sym(n). The set of all similarity classes of pairs of n X n real symmetric matrices
will be denoted by SP(n). Its study is the main goal of this paper.

If §,, stands for the n-th symmetric group, that is, the group of the permutations on
n elements, let p : S, — GL,(R) be the linear representation sending o to the n x n
matrix obtained from the identity matrix by acting the permutation ¢! on its columns.
Let P(n) = p(S,) be the image, which is clearly a subgroup of O(n). Its elements will be
called permutation matrices.

A diagonal matrix with ordered eigenvalues A = (\q1,..., ;) will be denoted by D()\)
and the set of all n x n real diagonal matrices will be denoted by Diag(n). If D()\) and D(«)
are similar, it is well known that {\1,...,An} = {e1,...,a,}. So there exists o € S,, such
that A\; = a,(;) (A = o(a) for short). In particular, D(\) = D(o(a)) = p(o)D(a)p(a)t.
Diagonal matrices with eigenvalues +1 are called diagonal square root matrices of the
identity. The set of all n x n diagonal square root matrices of the identity will be denoted
by OD(n). In fact, OD(n) = O(n) N Diag(n).

A nonnegative matrix is a real matrix with nonnegative entries. A nonnegative matrix
is called stochastic if the sum of the elements on each row is equal to 1. It is said double
stochastic if itself and its transpose are both stochastic. The set of n x n double stochastic
matrices will be denoted by €(n). The Hadamard product of two n x n matrices A = (a; ;),
B = (b;;) is defined as the n x n matrix A* B = (a; jb; ;). A?) will stand for the Hadamard
product of A by itself and called the Hadamard square of the matrix A. The Hadamard
square of an orthogonal matrix is called an orthostochastic matrix. The set of n X n
orthostochastic matrices will be denoted by Ort(n). Clearly Ort(n) C Q(n).

3 Similarity pairs of symmetric tensors

In this section we give a new proof that ten traces uniquely determine a pair of symmetric
tensors. In particular, SP(3) can be seen as a subset of R!?. Concretely, given a pair of nxn
real matrices (A4, B), let ; ; stand for the trace of the product A*B’. Since AB and BA have
the same trace, t(A,B) defined as t(A,B) = (tl,(),to,l,t2,0,t1’1,t0,2,t3,0,t2,1,t1,2,t0,3,t2,2) is
an invariant of the similarity class of the pair (4, B).

Theorem 3.1 Let (A, B) and (C,D) be two pairs of 3 X 3 real symmetric matrices. Then,
the following conditions are equivalent:

(2) (A,B) and (C,D) are similar.
(ii) There exists an orthogonal matriz U such that C = U ' AU and D = U"'BU.
(#ii) t(A, B) =t(C, D).



Before proving the theorem, we need a couple of lemmas.

Lemma 3.2 Let A, B be two 3 x 3 real symmetric matrices. Then, the following are equiv-
alent:

(i) A and B are similar.
(ii) There exists an orthogonal matriz U such that B = U~ AU.
(i) (bx(A), tr(42), x(4%)) = (t2(B), tx(B), tx(B).

Proof. (i) & (it) is well-known and () < (4i7) follows from Newton’s formulas (see, for
instance, [4], Vol.1, pages 274, 87). y

a b c
Remark 3.3 f A=D(A)and B=| b d e |, then it is straightforward that:
c e f
tr(B) tr(B?) 1 1 1 a a’?+b>+¢?
tr(AB) tr(AB%) | = M A As d B2+d+e | and
tr(42B) tr(A42B?) PYEDYEDY f E+e?+ f?
a? + b +c2
tr(B%)=3(a d f)| B®+d®+e> | —2(a®+d®+ f3) + 6bee.
2 4 e? 4 f?

Lemma 3.4 Let (A, B) and (A, C) be two pairs of 3x 3 real symmetric matrices, A = D()\).
If t(A,B) = t(A,C), there exists an orthogonal matriz U such that A = U 'AU and
C=U'BU.

( a b c g h i
Proof. Writing B=| b d e |,C=| h j k | and using Remark 3.3, we have
c e f i k1
1 1 1 [/ a a®+b% +c? g g>+h?+4? 00
M A A3 d ®4+d2+e | —| j h2+52+%2 =00
Mo X2 I\f 2+t f? I 2+E2+12 00

If A1, A2, A3 are distinct, we deduce a = g, d = j, f =1, b?> = h?, 2 = % and e? = k2.
In particular, by Remark 3.3 again, bce = hik. Thus C must be one of the following four
matrices:

a b ¢ a —-b —c a —-b ¢ a b —c
b del],|] b d e],| b d —e |, b d —e
c e f —c e f c —e f —c —e f

And one sees A = U AU, C = U 'BU taking U = D(1,1,1) in the first case, U =
D(-1,1,1) in the second case, U = D(1,—1,1) in the third case and U = D(1,1,-1) in
the fourth case. If \{ = Ao # A3, we deduce f =1, a+d = g+ j, > +e? = i2 +k?
and a? + 2b% 4+ d® = g% + 2h? + j2. In particular, ad —b® = gj —h2 and a +d = g + j.

Thus, B = ( Z Z ) and Cy = ( Igz ? ) are similar. Let S1,71 € O(2) be such that
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S71B1S1 = Dy = T['Ci Ty, D1 = D(a, (). Take S = ( S0 ) T = ( I (1) ) M =

0 1

D, P D Q
S—lBS:( : ),PT: N:T—l(JT:( 1 ), T=(¢ ,

PT f ( ) QT f Q ( ¥ )
Clearly t(A, M) = t(A,B) = t(A,C) = t(A, N). Remark that, in this very particular case,
thls is equlvalent to (tr(M?2), tr( 3) = (tr(Nz),tr(N3)). But tr(M?) = tr(N?) means

2 1+ 6% = €2 + ? and tr(M3) = tr(N?3) implies ay? + 862 = ae? + Bp?. In particular,

there exists V73 € O(2) such that V1Q = P (if @« = 3, it is obvious and if a # (3, then
v=2e,0 =+xpand V] = ( iol :I(:)l )) For V = ( ‘(/)1 (1) ), N =V '!MV and taking
the orthogonal matrix U = SVT !, we have A = U AU and C = U~!BU. Finally, if
A1 = A2 = A3, since (tr(B), tr(B?),tr(B?)) = (tr(C), tr(C?),tr(C3)), any orthogonal matrix
such that C = U ' BU verifies A = U 1AU. y

Proof of Theorem 3.1. (i) = (i) and (i) = (i4¢) are clear. Let us see (i%i) = (4i). By
Lemma 3.2, there exist orthogonal matrices S,T such that E = S~'AS and E = T~!CT,
E diagonal. Then t(E,S 'BS) =t(A,B) = t(C,D) = t(E,T 'DT). By Lemma 3.4, there
exists an orthogonal matrix V such that E =V 'EV and T DT =V 1§ 'BSV. Taking
the orthogonal matrix U = SVT !, we have C = U"'AU and D = U'BU.

Remark 3.5 The equivalence (i) < (i¢) in Theorem 3.1 shows that any anisotropic func-
tion on Sym(3) x Sym(3) factorizes through SP(3) (see, for instance, [9]). On the other
hand, the equivalence (i) < (i) in Theorem 3.1 shows that SP(3) can be seen as a subset
of R!® through the well-defined injective map ¢ : SP(3) — RI?, ¢([(4, B)]) = t(4, B). Next
example shows that not a single trace of the ten can be determined in terms of the other
nine.

a b c
Example 3.6 Let (4, B) be the pair A=D(A) and B=| b d e |. For the following
c e f
values of A1, 2,3 and a,b,c,d,e, f:
/\1 /\2 /\3 a b C d e f
1 2 3 0 0 1 0 1 0
1 2 3 0 1/2 0 O 3/2 0
1 2 3|0 438 0 0 13/8 0
1 2 3 0 1/7 0 0 12/7 0
1 2 3 0 1 1 0 1 0
1 2 3 0 1 1 0 -1 0
1 1 0 0 1 1 0 1 0
1 1 0]2/3 4/19/18 1 -2/3 0 1
1 -1 0 1 0 1 -1 1 0
1 -1 0 -1 0 1 1 1 0

then ¢; ; = tr(4A'BY) are equal to:



tio tog 20 ti1 to2 tz3o t21  tia  fo3 t22
6 0 14 0 4 36 0 9 0 23
6 0 14 0 4 36 0 9 0 22
6 0 14 0 4 36 0 37/4 0 23
6 0 14 0 26/7 36 0 9 0 23
6 0 14 0 6 36 0 12 6 28
6 0 14 0 6 36 0 12 -6 28
2 0 2 0 6 2 0 4 6 4
2 1 2 0 6 2 0 4 6 4
0 0 2 2 6 0 0 0 0 4
0 0 2 -2 6 0 0 0 0 4

4 Parametrizing pairs of symmetric tensors

In the last section we have seen that SP(3) is a subset of R' and a relevant object in the
context of anisotropic second-order valued functions. On the other hand, intuitively a pair
of symmetric tensors is determined by the three eigenvalues of each matrix and the three
Euler Angles relating the principal axes of each tensor. Nevertheless, permutations of the
eigenvalues, choice of the Euler Angles and changes in the axes orientation provide the same
class of a similarity pair of symmetric tensors. The purpose of this section is to deepen in
the study of this natural parametrization.

Since the problem of the permutation of the eigenvalues can be solved by considering
ordered ones or substituting them by the three principal traces, we focus our atention on
the relation among the principal axes.

Consider the map p : RS x O(3) — SP(3), where if a = (a1,a2,a3) € R®, 8 =
(B1,82,03) € R and S € O(3), then p(a, §8,5) = [(D(a),SD(B8)S™1)]. It is clear that p is
surjective. Indeed, given any [(4, B)] € SP(3), let o be the three eigenvalues of A, 3 the
three eigenvalues of B and U,V € O(3) such that U"'AU = D(a), V"BV = D(p). If
S =U"1V, then

p(a, 8,8) = [(D(a), SD(B)S™)] = [(D(er), UT'VD(B)V™'U)] =
[(D(),U'BU)] = [(UD(a)U, B)] = [(4, B)],

as desired. Therefore, p : RS x O(3) — SP(3) defined by p(a, 8, S) = [(D(a), SD(B)S71)] is
a parametrization of SP(3). In other words, a similarity class of a pair (A4, B) is determined
by a three-component vector (e, 3,S), where a = (a1, a2, a3) are the three eigenvalues of
A, B = (B1,B2,33) are the three eigenvalues of B and S = U 'V, where the columns of U
are an orthonormal basis of eigenvectors of A of respective eigenvalues a and the columns
of V' are an orthonormal basis of eigenvectors of B of respective eigenvalues 3. Remark that
this parametrization avoids the choice of the Euler Angles. The following lemma, whose
proof is omitted, solves the problem of the changes in the orientation of the principal axes
and is a key point for the next proposition.

Lemma 4.1 Let S,T € O(3). Then S = TP if and only if there exist Ri, Ry € OD(3)
such that T = R1SR>.

Now we are able to formally summarize all the previous discussion when the three
eigenvalues of A are distinct and the three eigenvalues of B are distinct too.



Proposition 4.2 If (a,(3,5), A\, u,T) € RS x O(3) and o = (a1, a2,a3) are distinct and
B = (B1,B2,0s) are distinct, then the following conditions are equivalent:

(Z) p(a, B, S) = p(/\,,u,T),

(i1) There exist P, Py € P(3), Ry, Ry € OD(3), such that D(\) = P;'D(a)P;, D(u) =
Py, D(B)P;y and T = Py 'R1 SR, Ps.

(i4i) There ezist Py, Py € P(3) such that D(\) = P, 'D(a)Pi, D(u) = P, *D(B)P; and
T = p1sPp,.

Proof. Let us prove (i) = (i7). If p(e,3,5) = p(A, u, T), there exists U € O(3) such that
D(A\) = U'D(a)U, TD(p)T~! = U'SD(B)S~'U. In particular, D(\) and D(«) are
similar, and D(p) and D(3) are similar too. Thus, there exist P;, P, € P(3) such that
D(\) = P{'D(a)P; and D(u) = Py ' D(B)P,. Then,

P 'D(a)Pi = D(\) = U 'D(a)U,

which implies D(a)P,U™! = P.U 'D(a). Since the a are distinct, PLU~! must be a
diagonal matrix, and since P;,U € O(3), then LU = Ry € OD(3) and U = R P;. On
the other hand,

TP, 'D(B)P,T' =TD(u)T™' =U*SD(B)S'U,

which implies D(B)P,T U 1S = P,T U 'SD(B). Since the 8 are distinct, BT U 1S
must be a diagonal matrix, and since P;,T 1, U 1,5 € O(3), then T U 'S = Ry €
0D(3) and T = U_ISR2P2 = PflRlSRsz, where Py, Py € P(3) and Ry, Ry € OD(?))

Let us prove (ii) = (iii). By hypothesis PL,TP, ' = R;SRy. Take their Hadarmard
squares. Since Pj,P, are permutation matrices, then (P,TP; )2 = PT2IP;. Since
Ry, Ry are diagonal square roots of the identity matrix, then (R15R2)[2] = SI2I. There-
fore P, TAP;* = 12 and T = PSP,

Suppose (iii): D(A\) = P[*D(a)Py, D(u) = Py 'D(8)P, and T2 = P71SPIP,. Then
(P TP M = pTRIP;! = SPL. Since P TP; ! and S € O(3) and their Hadamard square
coincide, by Lemma 4.1 there must exist R;, Ry € OD(3) such that PiTP, ' — RiSR;.
Then,

p(A, 1, T) = (D), TD(u)T~1)] =
[(P7*D(a)Py, PL'RiSRyP2 Py ' D(B) PPy 'Ry S 'Ry Py)] =
[(D(a), RiSRyD(B8)RaS™'Ry)]

[(R.D(a)R1, SRy D(B)R25~1)] = [(D(), SD(8)S~1)] = p(a, B,5)

)- 1

since R1D(a)R; = D(a) and ReD(B)R2 = D

=

In particular, once the eigenvalues are already ordered, we have:

Corollary 4.3 If (o,3,5) € R x O(3), T € 0(3), a = (a1,a2,a3) are distinct and
B = (B1,P2,P83) are distinct, then the following conditions are equivalent:

(Z) p(aaﬁa S) :p(aa IB’T)
(i) T = S,



Proof. In this case, P, and P, of the proposition must be the identity matrix. g

We summarize the section in the next theorem.

Theorem 4.4 There ezist a well-defined surjective map p : R® x Ort(3) — SP(3) sending
(o, B, M) € R® x Ort(3) to [(D(),SD(B)S™')] € SP(3), where M = S, § € O(3).
Moreover, if (a,3, M), (A, pu, N) € R® x Ort(3), are such that a; < as < as, B1 < P2 < B3,
A1 < A2 < A3 and M2 < p2 < p3, then p(a’ﬂaM) = p(Aa/J"N) Zf and O'I'Lly 'Lf (a’ﬂaM) =
(A, p,N).

5 Doubly stochastic matrices

In the previous section we have shown that the set SP(3) is closely related to R® x Ort(3),
concretely, a dense open set of SP(3) is made of copies of Ort(3). This fact guides us to
one of the main results of the paper: SP(3) can not be described as a subset of R?. But
before proving this we need to study some properties of Ort(3) and (3). To begin with,
we recall the following theorem due to Birkhoff (see [5], page 117).

Theorem 5.1 The set Q(n) of the n x n doubly stochastic matrices is the convezr hull (in
M, (R)) of the set P(n) of the n x n permutation matrices. That is, if M € M,(R), then
M € Q(n) if and only if there exist a € R™ with a; > 0 and Zf:'l a; = 1 such that
M = Z?:'l a;P;, where P; € P(n), i = 1....,n!, are the permutation matrices.

Remark 5.2 The expression of a doubly stochastic matrix as a convex combination of
permutation matrices is far from being unique. The reason is that, for n > 3, permutation
matrices are not linearly independent. Concretely, for n = 3, and if we call

100 100 001
p=|l010]|,n=[001]|,Pn={010],
00 1 010 100
010 001 010
Pr=|l100]|,P=[100]|,P=|001],
00 1 010 100

one can easily check that E?:l a;P; = 0 if and only if (ay,...,a¢) = A(1,—-1,—1,-1,1,1).
In other words, if A = {(a1,-..,a6) € R® | a; > 0,3°% a; = 1} is the convex hull of
the natural basis of R® and ® : RS — Mj3(R) is the linear map defined by ®(ay,...,as) =
a1 P, + ...+ agPg, then its image is ®(A) = (3) and its kernel is generated by the vector
v = (1,-1,-1,—-1,1,1). So Q(3) might be seen as the image of the projection of the
standard simplex A in the direction of the vector v.

Notation 5.3 Let A;, ;. be stand for the r-codimensional face of A determined by the
equations a;; = ... = a;, = 0. For instance, there are 6 1-codimensional faces, namely
Ay,...,Aq, and 15 2-codimensional faces, A1 2,A13,...,A56. Let Ci; i, = ®(Ay;,. 4)
and let 02(n) stand for the boundary of 2(n) as a topological subspace of M, (R) C R**",

Next proposition characterizes when the decomposition of a doubly stochastic matrix
as a convex combination of permutation matrices is unique.



PI‘OpOSitiOl’l 5.4 The boundary Of Q(?)) 8 8(9(3)) = 01’2 U C1’3 U C1’4 U C2,5 U 03’5 U 04,5 U
Ca6 U C36 U Cy. Moreover, if M € Q(3), then M € 3Q(3) if and only if M = ®(a) for a
unique a = (ai,...,ag) € A.

Proof. The map ® can be seen as a projection from RS onto the dimension 5 subspace
generated by the 6 permutation matrices, which is an open map. Hence, any point inside
A goes to a point inside €2(3). One can prove that any codimension 1 face of A does
not contain the direction of projection. Hence codimension 1 faces of A map injectively
through @ to Q(3). So any point in the interior of a codimension 1 face goes to the interior
of Q(3). The statement follows by studying the images of the codimension 2 faces. Now,
let M € 9Q(3) and suppose M € Cio. If M = ®(a), then a = (0,0,a3,...,a¢). Since
the kernel is generated by v = (1,—1,—1,—1,1,1), all the preimages of M are of the form
a+tv=(t,—t,as —t,aq4 —t,a5 +t,ag +t). But a+tv € A if and only if ¢t = 0. So a is the
only preimage of M in A. The rest of the cases would be shown analogously.

a? b 2 a b c
Remark 5.5 Let M € Ort(3), M =SB = [ &2 & f2 |,8=|d e f | € O3).
g2 h? 2 g h 1

Since Ort(3) C Q(3) and €2(3) is the convex hull of the set of permutations matrices, there
exists a; > 0, ¢ = 1,...,6, with 2?21 a; = 1 such that M = 2?21 a;P;. Equating both
expressions of M, one deduces the existence of a ¢t € R such that

(a]_,a2,(13,a4,a5,0/6) = (t - (92 - 62)’ —t+ f2’ —t +925_t + b2at - (b2 - dz)’t)

Since a; > 0, then max{0, (¢> — €2), (»? — d?)} < t < min{f?,b%,¢?}. In particular, there
are 9 possible equalities (3 for the possible values of the maximum and 3 for the minimum)
which should correspond to the 9 components of the boundary of Q(3).

Next result follows from [7].

Proposition 5.6 Let N(z,y,z,t) € R[z,y, 2,t] be the following polynomial:

N(z,y,z,t) = 221> + y22% — 2zyzt — 2zt(z + t) — 2yz(y + 2) — 2(zyz + zyt + z2t + yzt)
+al 4+ 2t 2y byt + 2t + 20t +2y2) — 2@ +y+ 2 +t) + 1

Then,
(a) Ort(3) = {4 = (ai;) € Q) | N(ar1,01,2,02,1,02,2) = 0}
(b) Ort(3) is homeomorphic to a 3-dimensional sphere.

Proof. Part (a) directly follows from proposition 2.2 in [7]. There, it is shown too that
K ={A = (ai;) € Q(3) | N(ai,1,a1,2,02,1,a22) < 0} is a star-shaped set whose center is
the matrix Cjy with entries 1/3 and whose boundary is Ort(3). Moreover, lemma 2.1 of [7]
proves that the ray joining any M € Ort(3) with Cy cuts Ort(3) just in M. Take now a
basis of the four dimensional linear subspace parallel to the the linear variety defined by
the permutation matrices. For a given M € Ort(3), let vy € R* — {0} the components in
this basis of the vector M — Cp. So we have the continuos injective map p : Ort(3) — S3
defined by u(M) = H:ﬁ Since K is compact and Ort(3) is its boundary, p is sujective.
Since Ort(3) is compact, p is closed. Therefore, y is an homeomorphism. g



6 Building pairs of symmetric tensors from traces

Keeping in mind the parametrization given in Theorem 4.4, we begin this section by de-
scribing the traces of a pair of 3 x 3 symmetric matrices (4, B) parametrized by (o, 8, M) €
RS x Ort(3) as polynomials in their eigenvalues linearly weighted by the components of the
matrix M. Since Ort(3) C ©(3) and €2(3) is the convex hull of the set of permutations
matrices, one gets a kind of “physical” interpretation (closely related to the energy of the
system) for the mixed traces as a convex combination of permuted products of powers of
their eigenvalues.

Proposition 6.1 Let (A,B) be a pair of 3 X 3 real symmetric matrices parametrized by
(o, B, M) € R® x Ort(3). If t; j = tr(A*B?), then

o i
tij = (af,05,05) M | 8] |. (1)
B3
In particular, t; ; are linear functions on the components of M. Moreover, there exists
a € RS, with a; > 0 and 2?21 a; = 1, such that
tij = a1(aiB] + ahB) + aiB)) + ax(ai Bl + oG + aiBl) + as(l 8] + abB + iBl) +
as(0i 3 + abB] + 0iB3) + as(al B + b B] + ol ) + as(al B} + 0B + af ).

a2 v 2
Remark 6.2 Developing Equality (1) writing M = Sl = [ 42 e f2 |, one deduces:
@ K 2
o o o1 o %) o o3 a3 a3 a2 ti,0
of of o o o o o3 o o b2 t2,0
o o o o o o o o o 2 t3,0
B1 B2 B3 B1 B2 B3 B1 B B3 &2 to,1
2 2 2 2 2 2 2 2 2 ¢
1 2 3 1 2 3 1 2 3 e2 _ 0,2 (2)
3 3 3 3 3 3 3 3 3 =1 ¢
i 5 3 i 5 3 i 5 3 2 0,3
o181 a1z a1z axfB1 axBs oaefB3 aszfi asfe asfs 2 ti1
3B BB Aifs a3 a3f: a3fs oif 03B a3fs B2 t2,1
a1 a1l a1 28] axfi B a3 3B asf ;2 t1,2
202 232 222 293 923 295 995 595 943
aifi aify oif; a3fBf 3B a3By a3fi a3fy a3 ta,2

Write system (2) as HX = T for short. Given a vector t = (¢1,...,t19) € R, one can ask
whether there exists a pair of 3 x 3 real symmetric matrices (A4, B) such that ¢t = ¢(A4, B), i.e.,
(t1,t2,t3,t4, 15,16, 17, 18,9, t10) = (t1,0,%0,1,%2,0,%1,1, 20,2, 13,0, 2,1, 1,2, 10,3, t2,2), and if this is
the case, how to find it. Given a pair of 3 x 3 real symmetric matrices (A4, B), it is clear that
tr(A2) > 0 and tr(B?) > 0. Moreover, by Remark 3.3 or Proposition 6.1, tr(42B%) > 0.
Therefore, the first three necessary conditions to t = t(A, B) are t3,t5,t10 > 0. Givena 3x3
real matrix A, by Newton’s Formula (see, for instance, [4]), its characteristic polynomial in
terms of its traces is

Qa(N) = A3 —tr(A)A2 + % (—tr(A2) + tr2(A)) A — (%tr(A‘o') - %tr(A)tr(Az) + %tr3(A)) .

If A is real symmetric, @ 4(\) must have three real roots. By Cardano’s Formula, this is
equivalent to C(tr(4),tr(42),tr(43)) < 0, where C(z,y,2) € R[z,y, 2] is the polynomial



C(z,y,2) = 28— 9ty + 8232 + 2122y — 36xyz — 3y3 + 1822. If C(tr(4), tr(42),tr(43)) < 0,
then the three roots are distinct. Therefore, the second two necessary conditions to ¢t =
t(A,B) are C(tl,t3,t6) < 0 and C(t2,t5,t9) < 0.

Suppose now one has a vector t = (t1,...,t10) € R verifying t3,t5,t190 > 0 and
C(t1,t3,ts) < 0 and C(to,t5,t9) < 0. From t,t3,t¢ one can construct the characteris-
tic polynomial of what will be A and find its three eigenvalues a = a1, a2, a3 which will be
real since C(t1,t3,t¢) < 0. Analogously, from (¢2, t5,%9) one can construct the characteristic
polynomial of what will be B and find its three roots 8 = (31, 2,33 which will be real
since C(te,t5,t9) < 0. Once one has a and , then one can construct the former system
HX = T, where T is defined from ¢ by reordering adequately its components. If o are
non zero and pairwise different, i.e., C(t1,t3,t6) < 0, and if 8 are non zero and pairwise
different too, i.e., C(t2,t5,t9) < 0, then it is not difficult to see that the rank of H is nine.
Therefore, the system HX = T is compatible if and only if det(H | T') = 0. In such a case,
it has a unique solution X. It remains to check that the correspondant matrix M is doubly
stochastic, which is not difficult. Finally, to see M € Ort(3) one can use the equation given
in Proposition 5.6.

Remark 6.3 Consider the six unmixed traces ¢; 9,%2,0,%3,0,%0,1,%0,2, t0,3, Which completely
determine the eigenvalues of A and B. If a mixed trace of the set {t11,t21,t12,t22} is
skipped, then the correspondant row in the system (2) must be removed. It can be shown
that this remaining matrix has rank eight. Thus, the correspondant set of solutions Lj; ;
is a line. From the first six equations, one can check that L;; must be contained into the
linear variety defined by the permutation matrices. By Theorem 5.1, 2(3) is the convex
hull of the set of permutation matrices and, by Proposition 5.6, Ort(3) is the boundary of
a star-shaped set contained in 2(3) whose rays joining any point of the boundary with the
origin cut the boundary just in that point. Therefore, L; ;[ Ort(3) contains at least two
points unless it is tangent to Ort(3).

Notation 6.4 Recall that an anisotropic second-order valued function might be thought as
a function f : SP(3) — R (see Remark 3.5). We will say that f is position-free if there exists
g : RS — R such that the composition f op : R® x Ort(3) — R verifies (f o p)(a, 8, M) =
g(a, B) for all (o, B, M) € R® xOrt(3), i.e., the expresion of f in terms of the parametrization
does not depend on M. For instance, the unmixed traces %, ,%2,0,%3,,%0,1,%0,2,%0,3 are
position-free anisotropic second-order valued functions. Next theorem is the main result of
this section. Endowing SP(3) with the natural topology and using topological reasonings,
we generalize the fact that 9 traces do not determine pairs of symmetric tensors.

Theorem 6.5 Any set of nine anisotropic continuous second-order valued functions, siz of
them position-free, do not determine the similarity class of a pair of symmetric tensors.

Proof. Suppose there exist f; : SP(3) = R, i = 1,...,9, six of them position-free, defining
an injective continuous map f : SP(3) — R?. Fix a; < @z < az and B < B2 < (3, the map
® : Ort(3) — R®, defined by &(M) = (f op)(a, 3, M) is an injective continuous map. Since
six of the nine f; are position-free, then six of the components of & are constant. Thus,
® induces an injective continuous map ¥ : Ort(3) — R®. Since Ort(3) is homeomorphic
to a 3-dimensional sphere (see Proposition 5.6), one has an injective continuos map from a
3-dimensional sphere to R®. But this is not possible by Borsuk-Ulam’s Theorem (see, for
instance, [6]). g
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7 Equations relating traces

By remark 3.5, SP(3) is a subset of R0 through the injective map defined by t : SP(3) —
R t([(4, B)]) = t(4, B). In other words, similarity classes of pairs of 3 x 3 real symmetric
matrices are globally described by ten traces. On the other hand, the similarity class of any
(A, B) is locally described by nine parameters: its six eigenvalues and three Euler Angles
relating the principal axes. Therefore, there should exist a relationship among the ten traces
which could be computed explicitly following Remark 6.2. This relation is a new equation
relating the 10 classical traces. By elimination theory, it should be polynomial (since all the
functions involved are polynomials) and its degree in each mixed trace would be at least
two (by Example 3.6). This function must vanish on an open dense set (pairs of symmetric
matrices with non zero and pairwise distinct eigenvalues) but, being continuous, it would
vanish too on all the set SP(3). Similarly, one could find a relationship among any set of
anisotropic (linear on the components of M) second-order valued functions as in 2.

Question 7.1 For a given pair of 3 x 3 real symmetric matrices (4, B), and for all integers
N1, M1y Np,my > 0, can tr(A™ B™1 ... A" B™) be expressed as a polynomial in the
coordinates of t(A4, B)? Some well-known identities satisfied by 3 x 3 matrices ([8]) might
be useful to give and answer.

For the simplest case we have the following well-known example.

Example 7.2 Let (A, B) be a pair of 3 x 3 real symmetric matrices. Using the Theorem
of Cayley Hamilton or the Theory of Invariants (see, for instance, [1]), it is easy to prove:

2tr(ABAB) = (tr?(A) — tr(4%))(tr?(B) — tr(B?)) + 4tr(A)tr(AB?) + 4tr(B)tr(A?B)
—4tr(A)tr(B)tr(AB) + 2tr?(AB) — 4tr(A2B?).
We finish by giving the formula which relates the ten traces for the particular case of

M being the identity.

Example 7.3 Let (4, B) be a pair of 3 x 3 real symmetric matrices and #(4, B) € R0, If
A and B are diagonal and z stands for ¢ = %tio — tiotg’() + §t1’0t3,0 + %t%,o’ using Remark
3.3

1
1 t10 t2p0 to,2

tog=(to1 ti1 ta1 )| tio too tspo tig |,
t20 t30 <« t2,2
which implies
1 7 4 3 10 1
(gt?,o - gtil,otz,o + gtiot&o + it%,ot%,o - ?t1,0t2,0t3,0 + §tg,o + t%,o) to,3 +

1 4 1
(gtiotzo — 17 o150 + gtLot2,0t3,0 + 5753,0 - t?,o) to,1to,2 +

6 3 2
(t1,0t3,0 — t%,o)(to,ﬁz,z +to2te1) +

15 3 45 I o
t2,0t30 — =10 + 11 0t2,0 — ot10t30 — stiotag | (fo1t12 +t11t0,2) +

gt1,o —t1 l2,0 + §t1,0t3,0 —gtao | tiatiz +

(t1,0t2,0 — t3,0)(t1,1t2,2 +to,1t1,2) + (t20 — tio)t2,1t2,2 =0.
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