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Abstract

Following a framework of elastic degradation and damage previously proposed by the
authors, an ‘extended’ formulation of orthotropic damage in initially-isotropic materials,
based on volumetric/deviatoric decomposition, is presented. The formulation is founded
on the concept of energy equivalence and makes use of second-order symmetric tensor dam-
age variables. It is characterized by fourth-order damage-effect tensors (relating nominal
to effective stresses and strains) built from the underlying second-order damage tensors
and decomposed in product-form in isotropic and anisotropic parts. The formulation is
developed in two steps. First, secant relations are established. In the isotropic case,
the model embeds a path-parameter allowing to range between pure volumetric to pure
deviatoric damage. With the two undamaged material constants this makes a total of
three constant parameters plus an evolving scalar damage variable, giving rise to a four-
parameter model with two varying isotropic material coefficients. In the anisotropic case,
the model is still characterized by the same three material constants plus three evolving
variables which are the principal values of a second-order damage tensor. This leads to
a six-parameter restricted form of orthotropic damage. In the second step, damage evo-
lution rules are formulated in terms of a pseudo-logarithmic rate of damage. This allows
to define meaningful conjugate forces that constitute a feasible space in which loading
functions and damage evolution rules can be defined. The present ‘extended’ formulation
is closed by the derivation of the tangent stiffness.
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1 Introduction

The pioneering works of Kachanov (1958) and Rabotnov (1969) laid the foundations of the
branch of Continuum Mechanics normally referred to as Continuum Damage Mechanics
(CDM). After the first generation of formulations of elastic degradation and damage was
proposed (Dougill 1976; Lemaitre and Chaboche, 1978; Bazant and Kim, 1979, Dragon
and Mréz, 1979; Maier and Hueckel, 1979; Cordebois and Sidoroff, 1982; Ortiz, 1985;
Murakami, 1988; to cite only a few), the number of papers dealing with this subject has
increased rapidly (see e.g. the extensive reference list provided in the monograph by Kraj-
cinovic, 1995). Initially, most of the literature was centered on modelling isotropic stiffness
degradation based on scalar damage variables (e.g. Mazars and Lemaitre, 1984; Simo and
Ju, 1987; Ju 1989; Neilsen and Schreyer, 1992), while in recent years the focus has gradu-
ally shifted to anisotropic stiffness degradation based on damage tensors of various orders
(e.g. Cordebois and Sidoroff, 1982; Ladeveze, 1983; Chow and Wang, 1987; Yazdani and
Schreyer, 1988; Ju, 1990; see also the references listed in Zheng and Betten, 1996 and
Carol et al., 2001a). Indeed, anisotropic degradation is crucial both for damage-induced
anisotropic processes in initially-isotropic materials (as e.g. quasi-brittle materials such as
concrete, geomaterials, ceramics, etc.) and for damage development in anisotropic mate-
rials already embedding anisotropic textures at virgin state (e.g. rocks, composites, etc.).
However, the problem of modelling anisotropic degradation still remains a challenging
research issue. This includes the selection of appropriate tensor damage variables, the
derivation of secant stiffness and compliance, the definition of appropriate loading func-
tions, the postulation of evolution laws based on experimental observation, the description
of coupling to plasticity, unilateral effects, stiffness recovery, and so on.

Considering second-order damage tensors as one of the most convenient options to rep-
resent anisotropic (orthotropic) degradation without excessive complexity, one problem
is to find the most convenient forms of secant stiffness and compliance in terms of such
second-order tensors. Such expressions should lead to sufficiently comprehensive forms
of anisotropy (desirably approaching general orthotropy), but at the same time should
keep sufficiently manageable for the practical implementation. The secant stiffness of the
Valanis’ damage model based on a second-order integrity variable (Valanis, 1990) provides
an elegant and practical form of restricted orthotropy based on 5 parameters (two initial
material constants and three evolving principal values of damage). At the same time, the
model turns out to be compatible with traditional concepts of CDM such as effective stress
and strain, energy equivalence, and exhibits a number of convenient properties (see Sec-
tion 2.4). This may be considered as a good departure point for the development of more
general anisotropic damage models. From a more rigorous viewpoint, some authors have
applied representation theorems to obtain general expressions of orthotropic stiffness and
compliance in fabric elasticity in terms of second-order fabric tensors (Cowin 1985, Zysset
and Cournier, 1995), or have started from micromechanical considerations to represent
damaged elastic properties in terms of series expansion of appropriate orientation distri-
bution functions (Ladevéze, 1983; Lubarda and Krajcinovic, 1993; He and Curnier, 1995).
However, these general expressions are either quite complex and, at least in their origi-
nal form, privilege only the characteristics of the elastic properties at a given state (not
the evolution), or they do not automatically preserve (or actually even refuse in method-



ological sense) the convenient features provided by the CDM framework (e.g. notion of
effective quantities, modularity of the constitutive formulation, convenient structure to
combine eventually damage with plasticity, viscoelasticity, or other rheological models
for the undamaged material, including anisotropic behavior). Other developments within
the framework of CDM (Lam and Zhang, 1995; Zheng and Betten, 1996) are confined
instead to specific aspects of a damage model, as e.g. the definition of the fourth-order
damage-effect tensor defining the linear map between nominal and effective stress and
strain quantities, and the arising secant moduli.

In a sequence of papers, the authors have contributed to the proposal of a unified
theoretical framework of elastic degradation and damage (Carol et al., 1994), the analysis
of spurious energy dissipation of stiffness recovery schemes (Carol and Willam, 1996), and
the study of the constitutive localization properties of scalar damage models, based on
the spectral analysis of the acoustic tensor (Rizzi et al., 1995; Rizzi et al., 1996; Carol
and Willam, 1997). Most recent contributions aimed at the representation of anisotropic
elastic degradation through a second-order symmetric damage tensor and at the formu-
lation of convenient damage evolution laws (Carol et al., 2001a,b; Rizzi and Carol, 2001).
Such formulation, here referred-to as ‘basic’, describes a Valanis-type restricted form of
orthotropic damage combined with convenient evolution laws defined in terms of a pseudo-
logarithmic damage rate. The classical scalar damage of the ‘(1—D)’-type, which we will
call ‘basic’ isotropic damage, is recovered as a particular case of the formulation when the
damage tensor becomes spherical.

In the present paper, the ‘basic’ formulation is further extended to provide a more
general description of orthotropic damage in initially-isotropic materials (‘extended’ for-
mulation). The extension proposed is based on the volumetric/deviatoric decomposition
of the underlying isotropic undamaged stiffness and compliance. The new developments
focus on the following constitutive aspects: ‘extended’ secant relations of pure elastic
damage based on damage-effect tensors decomposed in product form in isotropic and
anisotropic parts, definition of the pseudo-logarithmic rate of damage and of the relevant
conjugate force in the ‘extended’ framework, general damage evolution laws in pseudo-
logarithmic space and resulting tangent stiffness. The interested reader is referred to Carol
et al. (1994) and Carol et al. (2001a,b) for the details of the previous formulations and
for comparison to the present extension. Indeed, to avoid undue repetitions, the presen-
tation is restricted here to the new developments of the ‘extended’ formulation. However,
a necessary brief account of the earlier framework of elastic degradation and damage is
presented first in Section 2 in order to introduce the basic terminology and definition of
the quantities involved in the ‘extended’ model. The main developments of the paper are
then provided in Section 3, where ‘extended’ isotropic degradation is concerned, and in
Section 4, which deals with ‘extended’ anisotropic degradation. A few closing remarks
and perspectives of the present study are outlined in the closing section.

Notation. Compact or index tensor notation is used throughout. Vectors and second-
order tensors are identified by boldface characters, whereas fourth-order tensors are de-
noted by blackboard-bold fonts (e.g. A, C, E). Superscript ™ indicates the transpose oper-
ation (on first and second couple of indices for fourth-order tensors, i.e. componentwise
(A")ijki=Api;), while ‘tr’ is the trace operator. Symbols ‘" and ‘" denote the inner



products with single and double contraction. The dyadic product is indicated with ‘®’,
whereas ‘® ’ denotes the symmetrized outer product defined as (A ® B):C=A-C,-B", for
any arbitrary second-order tensors A, B, C, where C;=(C+C")/2 is the symmetric part
of C; componentwise (A ® B);ju=(AixBji+AuBj;)/2. T and [,=I&1 are respectively the
second-order and symmetric fourth-order identity tensors.

2 Theoretical framework of elastic degradation and
damage

In the present section, the main ingredients of the theory of elastic degradation and
damage presented in Carol et al. (1994) are briefly summarized. Reference is made as well
to the classical formulation of isotropic damage of the ‘(1—D)’ type (‘basic’ formulation
of isotropic damage) and to the ‘basic’ formulation of anisotropic damage developed in
Carol et al. (2001a).

2.1 Secant relations

In the simplest setting of pure elastic degradation (no elastic-plastic coupling), it is as-
sumed that unloading always leads to the origin of the stress/strain curve with a constant
secant stiffness/compliance. Fully-reversible reloading also follows back the same linear
path until the nonlinear envelope behavior resumes. In other words the material behavior
is characterized by a secant linear hyperelastic constitutive law: at any damage state the
stress tensor o and (small) strain tensor € are related by

c=LF:¢; e€e=C:o, (1)

where | and C are the positive-definite fourth-order stiffness and compliance tensors, re-
spectively, which are endowed with both major and minor symmetries and are the inverse
of each other, i.e. E:C=C:E=I;. In the initial (virgin) state the material is characterized
by undamaged stiffness and compliance E,, C,.

It is also assumed that the compliance tensor C is a function of a generally-defined
damage variable D, which may be scalar, vector- or tensor-valued (in the following of
the paper symmetric second-order tensor variables are assumed). Obviously, the dam-
aged compliance also depends explicitly on its initial value C,. Analogously, in a dual
framework, the secant stiffness could be expressed in terms of dual damage variables D
and initial value E,. Variables D and D may be linked to each other and it is mainly a
matter of choice to take one of the two as the underlying damage variable of the model.
The distinction between dual variables is not completely pursued in the present summary
section: without loss of generality the subsequent equations are mainly confined to the
compliance-based formulation in terms of D.

Thereby, the elastic (free) energy of the material per unit reference volume u may be
expressed, at any stage of the damage process, by the quadratic forms

1 _ 1
—e:[E([EO,’D):e:§O':C(CO,’D):0'. (2)

u—=



Disregarding effects other than mechanical, the previous relation may be differentiated
with respect to time to obtain the incremental energy balance in terms of the (non-
negative) dissipation rate d and conjugate forces —)Y, energetically-associated to the rate
of the damage variable D:

~loeo): 2t 3

. . . ou
1=0:€—d: = (— : > -y = — .
i=0:€—d; d=(-Y):D>0, y 5 5D

~ 9D

The conjugate forces —)Y constitute the space in which the hardening/softening loading
surface F' (Y, p)=0 is defined, where p denotes an appropriate set of hardening internal
variables, and where the local normal to the damage surface N' and the ‘damage rule’
M entering the damage rate D can be established:

OF
(=Y)

N = . D=\AM. (4)

A

Here, similar to plastic flow rules, ) is the (non-negative) inelastic multiplier defining
the magnitude of the damage rate. This brings in a convenient analogy to plasticity
formulations.

2.2 Plasticity-like concepts

The above-mentioned thermodynamic framework of elastic damage (formulation in terms
of a free energy potential) is indeed perfectly compatible with well-established plasticity-
like concepts allowing dual, and, in a sense, more intuitive derivations in stress (or strain)
space. A first step is to consider the (fourth-order) space of forces —Y conjugate to the
compliance rate C, in which we can rephrase the dissipation rate d as

1 ) . ou

. 1 aC
d=-oc:C:o=(-Y)uC; —-Y=—
oc:C:o=(-Y):C; 90

=5000; —y:(—v)::a—p, (5)

o

and loading function F'(=Y,p), relevant normal N and fourth-order ‘compliance rule’ I

as
_OF aC _ac

T o(-Y)|, oD T oD
These quantities may be finally related to the ones more usually adopted in stress space

where the loading function is given as F'(o,p), with normal to the surface n, degrading
strain rate €; and ‘flow rule’ m:

N: C=AM; M M. (6)

A

o
- do

n =N:o; é= m; m=M:o. (7)

A

Using these concepts, the constitutive equations of elastic degradation may be rephrased
in terms of rates and become formally identical to the ones classically derived in the
context of non-holonomic elastic-plasticity. A basic difference is that the current secant

stiffness £ enters the tangent operator E,, instead of the initial stiffness E,. Indeed,



for further inelastic loading, the inelastic multiplier )\, incremental stress/strain law and
tangent stiffness are obtained from the consistency condition as follows:

-1 1
A=gmib:é; o=Fy:é Ey=F-ZE:men:E, (8)

tan

where the hardening parameters in strain and stress space, H and H, respectively, are

defined as:
oF oF

H=——| =H4+n:E:m; H=-—| . 9

O | ¢ o | o )
Similar to elastic-plasticity, H, n and m are restricted in such a way that, to avoid sub-
critical softening, the denominator H=H+n:E:m in eqn (8) remains always positive. The
model is called associated in stress space (traditional definition) when m is proportional
to n; consequently, the tangent stiffness E,,, exhibits major symmetry. If m is derived
from a potential (), associativity may be alternatively stated as Q=F. Other definitions
of associativity may be established in compliance space, if M is parallel to N, which implies
the former, or in damage space, if M is parallel to N, which implies all the previous ones.
The latter may be termed full associativity (Carol et al., 1994).

2.3 CDM concepts

In Continuum Damage Mechanics (CDM) the damage-state relation C=C(C,, D) (or
equivalently E=E(E,, D)) is usually derived indirectly through a series of conceptual steps
(see e.g. Carol et al., 2001a; Rizzi and Carol, 2001; and references quoted therein). Al-
though some criticism may be addressed to such a purely phenomenological approach (see
for instance Ladeveze, 1983; Rabier, 1989; He and Curnier, 1995), this scheme is adopted
here since it provides a modular structure of the constitutive equations, not only useful
to derive and interpret the final secant relations obtained, but also eventually convenient
to implement more comprehensive generalizations involving e.g. coupling to plasticity,
viscoelasticity, or other constitutive models for the undamaged behavior.

A constitutive law for the undamaged material is first introduced, which is expressed
in terms of the so-called ‘effective’stress and strain quantities, o4 and €., namely stress
and strain acting at the level of the intact material between microcracks:

O = byt € ; €t = Cp 1 O - (10)

Then, one of the relations between nominal and effective (stress or strain) quantities is
assumed, often in linear form, by introducing a non-singular fourth-order damage-effect
tensor A, as e.g. in o z=A:0 (see e.g. Lam and Zhang, 1995; Zheng and Betten, 1996;
Voyiadjis and Park, 1997), together with a second relation expressed through a so-called
‘equivalence principle’ (‘strain equivalence’ if e=e ., ‘stress equivalence’ if =04, or
‘energy equivalence’ if o:€/2=0.4:€ 4/2). The ‘energy equivalence’ approach (Cordebois
and Sidoroff, 1982) is adopted here, since it allows to derive secant stiffness and compliance
automatically embedding the major symmetry property. Then, the current elastic energy



at any time of the degradation process can be expressed by any of these relations:

1 1 1 1
u=—-0 € =—-€ 0 =—-0 C:0 =—-€ L:e€
2 2 2 2
(11)
1 1 1 1

9 Ocff€off — 5 €eff Ot — 9 Ueﬂ:CO:aeﬂ = 5 6eff:[l':(]:eeff .

The following nominal/effective relations are then consistently assumed/obtained:

€eqg=MA:€; o=A:oy4, (12)
or
og=A:0; €=A":eyq, (13)
and the hyperelastic stiffness and compliance are expressed by:
E=A:E:A"; C=A":C,:A, (14)

where A and A are dual fourth-order damage-effect tensors, inverse of each other, that is
A:A=A:A=I1,, and endowed with minor symmetries (but not necessarily major symmetry).

Before arriving at the expressions of the secant stiffness and compliance in eqn (14),
the undamaged behavior has to be prescribed. In the present context restriction is made
to nitially-isotropic materials, namely, in terms of undamaged Lamé’s constant A, and
shear modulus G, or Young’s modulus E; and Poisson’s ratio v:

_ 1 _
F,= A I®I+2G,181; Co=-DLIel+-—NI1gI, (15)
By Ey
where the two sets of isotropic undamaged parameters are linked by the classical relations
vy B, E, 3N, +2G, A,

Ao= =Gy (16)

(1T+1) (1 =21, Go= 2141y " " Ao+Gy T 2(Mg+Go)
Alternatively, by introducing the idempotent fourth-order tensor projection operators
P,=I®I/3 and P,=0,—P, (see e.g. Walpole, 1984), the initial isotropic stiffness and com-
pliance tensors can also be conveniently rewritten in spectral form. This highlights directly
the decoupling between initial isotropic volumetric and deviatoric responses, which are
taken here as reference for the following developments:

1 1

t,=3K, P 2 P : =—FPFP — P 1
0=3K P, +2G, Pp; € 3K, V+2G0 D > (17)

where K, is the bulk modulus of the undamaged material, which may be expressed in
terms of the previous material constants as:

By

3(1 -2y, (18)

o ra 2 G-
Other representations equivalent to (15) and (17) could also be adopted as a different
starting point for the reference isotropic stiffness and compliance. For instance, from
eqn (15b) the terms may be regrouped to obtain different binomial expressions of C in
terms of coefficients 1/E, and —v,/E,, or 1/E, and 1/(2G,) , or 3/(2E,) and 1/(6K), etc.
(see for example Ladeveze, 1983 and He and Curnier, 1995, which make use of elongation
and bulk moduli).



2.4 ‘Basic’ formulation of isotropic and anisotropic damage

The damage-effect tensors A, A should be expressed in terms of the underlying damage
variables D or D adopted in the model. Two notable instances of modelling elastic
damage in the present context are the following (Carol et al., 2001a): i) the classical
‘(1-D)’ scalar damage model (“basic’ isotropic formulation), which is founded on a single
scalar damage variable 0<D<1 varying between 0 (no damage) and 1 (full damage),
or on an integrity variable ¢=1/¢=+/1—D with complementary variation between 1 (no
damage) and 0 (full damage); ii) the ‘basic’ anisotropic formulation of damage established
upon Valanis-type positive-definite second-order integrity tensor ¢ varying between I (no
damage) and 0 (full damage) (Valanis, 1990), or upon its inverse ¢:t_b_1 varying between
I (no damage) and oo (full damage). In these two cases the damage-effect tensors A,
A, inverse of each others, are respectively given by the following positive-definite fully-
symmetric fourth-order tensors:

= - 1
A(l*D):vl_D Hs:¢ [|.57

b = =D
Abas:\/gg\/ga Abas:\/gg\/ga (20)

which, from eqns (12a), (13a) lead respectively to the following nominal to effective rela-
tions:

I, =¢ 1, (19)

_ 1
€ i—p)=V1I—De=¢ge, Ueff,(l—D):ﬁa:d)a; (21)

6eff,bas = \/T t € \/g 3 o-eff,bas = \/7 “O - \/; . (22)

Also, concerning secant relations, the following convenient forms of secant stiffness and
compliance are recovered from eqns (14) and (19), and, for initially-isotropic materials,
from eqns (14), (15) and (20):

1

[E(I—D) =(1-D)E = éQ E, , C(I—D) = 1-D Co = ¢2 Co ; (23)

1+y,  —
7 P@¢.  (24)

_ — - - 14
[Ebas:A0¢®¢+2G0¢@¢; Cbas:_ﬁo¢®¢+
0

Notice that eqn (24) presents the Valanis-type structure of orthotropic stiffness and com-
pliance in which ¢ or ¢ simply replace I in eqn (15) (Valanis, 1990; Zysset and Curnier,
1995). Secant relations (23) and (24) involve two isotropic undamaged elastic constants.
Once these two constants are given, one or three degrees of freedom are respectively
available to specify the variations of secant stiffness and compliance in the isotropic and
anisotropic case. In the anisotropic case this leads to a restricted form of orthotropy based
on five parameters.

Furthermore, concerning damage rate and conjugate thermodynamic force in the dis-
sipation rate d, eqn (3b), a logarithmic damage variable L=—In (1—D)=—2In ¢ varying
between 0 and oo, with corresponding (holonomic) rate L, and a (non-holonomic) pseudo-
logarithmic rate of damage L are introduced (in general L exists only as a rate, while it



cannot be expressed as the rate L of a finite quantity L), so that the forces conjugated to
such rates are conveniently given by

. D &

L=—F+=-2=% —Yi_-py=1u; 25

o - E 1
L = -2 Abas : ¢ = -2 \/g : d) * \/$7 _ybas = 5 Ueff,bas : 6eﬂ,bas ’ (26)

where &g 1.5 and €.q 1,5 are the effective quantities of the ‘basic’ model given in eqn (22).

In the two following sections, ‘extended’ versions of both the isotropic and anisotropic
‘basic’ formulations are presented. While retaining the fundamental advantages of their
‘basic’ counterparts (e.g. the isotropic formulation is a particular version of the anisotropic
one, stress-based formulations and their dual strain-based are fully equivalent, introduc-
tion of pseudo-logarithmic rate of damage and related advantages, etc., see Carol et
al., 2001a,b for the details), the ‘extended’ formulation developed in the sequel provides
a broader representation of the degraded behavior, encompassing for instance pure devi-
atoric (‘von Mises’) or mixed volumetric/deviatoric damage, among others.

3 ‘Extended’ volumetric/deviatoric formulation of
isotropic damage

In the above-mentioned traditional ‘(1—D)’ scalar damage model (‘basic’ isotropic formu-
lation), a single scalar damage variable D or integrity variable ¢ introduce a proportional
degradation of all components of the secant stiffness: E=(1—D) E,=¢? E,. This is equiva-
lent to reduce Young’s modulus E=(1—D) E, (and similarly also bulk and shear moduli
K and G, and Lamé’s constant A), while Poisson’s ratio remains constant v=v,, which
implies a restricted form of isotropic degradation (see e.g. Ju, 1990). Other possibilities
of damage models with a single scalar damage variable A\(D) affecting secant compliance
as C=C,+A(D) M with different given constant isotropic directions M, as well as different
scalar damage models from the literature framed as particular cases of the general setting
of elastic degradation are reviewed in Rizzi (1993). An interesting case is that of purely
deviatoric or ‘von Mises’ damage (M=Pp,), in which only shear modulus G is decreased
while bulk modulus K remains unaffected and the associated model is based on a ‘von
Mises’ loading surface (Neilsen and Schreyer, 1992). The proposed extension is based on
the idea of allowing independent evolutions of volumetric and deviatoric parts of stiff-
ness and compliance, then including as particular case the above-mentioned ‘von Mises’
damage formulation.

3.1 Bi-dissipative isotropic model (two damage variables)

Indeed, the most general form of isotropic elastic damage with constant unloading/reload-
ing secant stiffness and compliance would require two independent scalar damage variables
acting independently on each of the two elastic material parameters taken as reference.
For that purpose, referring here to undamaged elastic bulk and shear moduli K; and G,



it is convenient to adopt the volumetric-deviatoric format of current secant stiffness and
compliance similar to eqn (17):

1 1

S 2
150 3K ( 7)

where, as opposed to eqn (17), K and G are the current (secant) degraded counterparts
of K, and G,. Moduli K and G are assumed to decrease independently with two damage
variables D and D, evolving separately between 0 and 1 or, alternatively, with integrity
variables ¢, ¢, or their inverses ¢, @, displaying complementary variations between

1 and O:
_ 1 _ 1
QSK:@:Vl_DKa d)G:%:\/l_DG' (28)

Then, rephrasing the ‘(1— D)’ model, here with two independent variations, the secant
moduli entering eqn (27) are given as:

K:(l_DK) Kozéf( Ky ; G:(l_DG) GOZQE(Q; Go . (29)

Differentiating the compliance tensor (27b) yields the following compliance rate:

DK Py DG Pp —9 q}_K lP_V ) q}_G [P_D (30)

C: _— =
1-D, 3K 1-Dg 2G b 3K 4, 2G’

where notice that K and G are the current moduli. Then, as in eqn (25), two independent
logarithmic damage rates Ly and L playing directly the role of inelastic multipliers can

be alternatively introduced to the rates DK, DG, or ¢, g, namely:

LK:I?II(?K:_Q%; LG:I?%G:_QZ_S:' (31)
With this change of variables, eqn (30) can just be rewritten as:
a‘::LKf_;(qu_g. (32)
Rates definitions (31) actually correspond to assume the following total relations:
Liy=1In ! =—2Inég; Lg=In ! = —2Ind, , (33)
1—Dg 1 - Dg

where L, and L. are logarithmic damage variables varying between 0 and oo, or, what
is equivalent, the inverse relations

Diy=1-etx Dy=1-eto; ¢p=etul? ¢, =elc?, (34)

This is a convenient departure point for a general bi-dissipative isotropic degradation
model based on two damage variables, two inelastic multipliers, two loading surfaces, etc.

10



3.2 Single-dissipative isotropic model (one damage variable)

Restricting now our attention to single-dissipative models based on a single loading surface
and a single logarithmic damage variable L, one may assume the following relation between
the two logarithmic damage variables:

LK:ﬁKL; LG:ﬁGLa (35)

where 3 and [ are two additional constant parameters. With linear link (35), volumet-
ric and deviatoric degradations are no longer independent, although their values are not
necessarily identical as in the ‘basic’ scalar ‘(1—D)’ model of elastic degradation (5x=0).
With hypothesis (35), eqn (32) becomes

Pp
36
<5K + Ba 2G> (36)
Taking now L as the inelastic multiplier, A=L, the following terms of the general theory
in eqns (4b), (6d) and (7d) can be identified:

oC Py P,

M=1; M= BLM ﬁK?)K—FﬁG m=M:o=0x€e,+0;€,, (37)
where €, =¢,, I and €, =tr €/3 are the volumetric part and volumetric component of the
strain tensor €, while €, is its deviatoric part.

The dissipation rate equation leads to the force conjugate to the logarithmic damage

rate L: 1
where u,, and uj, are the current volumetric and deviatoric components of the elastic
energy u=uy,+u,=0y € /2+0o,:€ /2,
1o 1 lop:o
Uy == —2Y=-9Ké,; u,=- 2P
VT2 K2 L P YE
and oy, oy and o are the volumetric component, volumetric part and deviatoric part
of the stress tensor.
In order to obtain an associated model, the following loading function is considered,

F=8gu,+Bgup—r(l)=-Y-r(L), (40)

=G €ep:€p, (39)

whose gradients with respect to —)), —Y and o at constant A are equal to the correspond-
ing rules (37), namely N=M=1, N=M and n=m. From F’, the hardening moduli H and
H=H+n:E:m, eqn (9), can also be derived as follows:

or _ or
H_aL (512<Uv+5éUD) ; H:a—L+512< uy + & up - (41)

The inelastic multiplier A and (symmetric) tangent operator E, can be finally obtained

from eqn (8) as:

tan

1

A=L= T (Broy + Bgop) : €; (42)
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Eian = Biso — % (Bgov + Bgop) ® (Bgoy + Baop) (43)

where [E, is the current secant stiffness in eqn (27a), with bulk and shear moduli (29).

The model described has only one function to be defined, that is the hardening function
r=r(D), plus the two constants [, and ;. Some particular cases of interest are for
Bx=08¢, in which the traditional ‘(1—D)’ scalar damage model is recovered, and for 3;,=0,
which results in pure deviatoric damage according to a ‘von Mises’ loading surface, while
on the contrary for 3,=0 a pure volumetric damage would be obtained.

3.2.1 The path-parameter 7

Actually, since the hypothesis L;,=0; L, Lo=p. L corresponds to assume constrained
straight paths in the plane of the logarithmic damage variables L, and L. (Fig. 1), a
single path-parameter n with values between —1 and 1 can be introduced to express the
constants 3, and [, which is sufficient to define uniquely the slope of the linear paths
with respect to the bisector at 45°. Taking

Br=1-n, Bg=1+n; nzw, (44)
we have (Fig. 1):
_Be o _ ™ _ Ba— Pk
tg®—5K, n-tg@-tg(@ 4>—5G+5K. (45)

Then, while —1<7n<1, parameters 3, and (3 are linked by the constraint 3, +/5,=2 and
take values between 0 and 2 (Fig. 2). The ‘basic’ formulation is therefore recovered for
n=0 (or fx=L;=1), while pure deviatoric and pure volumetric damage are respectively
obtained for n=1 (or =0, 5,;=2) and n=—1 (or Bx=2, S=0).

Figs. 1-2

Consistently with the hypotheses above, the variations of damage variables Dj and
D and integrity variables ¢ and ¢, eqn (34), and logarithmic damage variables L
and L, eqn (33), are linked to the evolution of single scalar variables D, ¢ and L by the
following power laws:

Die=1-(1-D)x =1-(1-D)"", Dg=1-(1~-D)¢s =1~ (1-D)""; (46)
O =’ =¢'",  Gg= ¢l =g, (47)
Ly=8gL=(1-n)L, Lo=BsL=(1+n) L, (48)

where, analogously to eqns (33), (34), variables D, ¢ and L are related by:

_ 1 _
D=1-—e¢", ¢g=e"?; L:ln1 D:—21n¢. (49)
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The main relations of the ‘extended’ isotropic model in terms of S5 and S, equs (27),
(37), (38¢), (41) and (43), can then be rewritten in terms of the single constant param-
eter 7, which better highlights the difference between contributions from volumetric and
deviatoric components of the quantities involved. Also, it may be seen more clearly how,
for n=0, the formulation collapses into the ‘basic’ isotropic model in Carol et al. (2001a):

(1) (1) p>-m P21+
Eiso = @ V3IKy Py + ¢ P2G, Pp; Ciso = 3 K, [PVjLTGO[PDQ (50)
PR Pp _ [P_D_[P_V>.
M= (=) g+ (1+n) 52 =Cn (32 -55) ; (51)
m=(1-n)e,+(1+n)ep=€e+n(e,—€y); (52)
~YV=0=-n)u,+(1+n) up=u+n(up —uy); (53)
_ or 9 9 or 9
Hza—L+(1—77) uy + (1+n) UD:a—L+(1+77)u+2n(uD—uV); (54)
1
un =B (A= ovt Gemop) o (A-n o+ eno) =
1
:[Eiso_ﬁ<a+77(UD_UV)>®<U+n(UD_O'V)>'

3.3 Secant isotropic parameters

Focusing now on the secant relations obtained from eqns (27)-(29), (46)-(49) and from
classical formulas analogous to (16) and (18) with current parameters in place of initial
ones, the functional dependencies of secant elastic parameters K, G, A, E and v in the
‘extended’ isotropic formulation as a function of scalar damage variable D and constant
parameter 7 are given by the following expressions:

K G
EZ(I—D)H; G—Oz(l—D)””;
B 3(1— DY | (56)
Ey  2(1+1y,) 1-D)"""+ (1—2y)(1—-D)"*"’
A+ y) A=D)"" = (1-2y) (1 - D)
C2(141) 1—-D)"7"+ (1—21) (1 - D)

To avoid undetermination for v,=0 (A,=0), the normalization in eqn (56¢) could be
alternatively stated as e.g. with respect to E;. Then eqn (56¢) could be replaced by:
A (1= D) (1= D)t

E,  3(1—2v) 31+ (57)
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which includes as particular case the function 3A/Ey=(1—D)'"""—(1— D)™ for 1,=0
(A,=0). The dependence on damage variable ¢ and logarithmic damage variable L may
be read by replacing in eqns (56), (57) the term (1— D) with ¢? and e Z, respectively.

The corresponding variations of K-G, A, E and v are respectively represented in
Figs 3, 4, 5 and 6 as a function of both (a) scalar damage variable D and (b) loga-
rithmic damage variable L, for different constant values of —1<n<1. The asymptotic
dependencies on L favor the adoption of the newly-introduced logarithmic damage vari-
able L increasing from 0 to oc as damage grows to the limit. Except for Fig. 3 (since
not necessary), reporting the evolution of K and G, a reference (‘academic’) value of
Poisson’s ratio 1,=1/8=0.125 is taken in the drawings, which corresponds to assume
K,=G,=3 A\;=4/9 E,,. Similar variations have been also obtained for different ‘engineer-
ing’ values of parameter v, ranging between 0 and 0.49. Taking for concrete the reference
value v,=0.18, secant parameters A, E and v are also displayed in Fig. 7 as a function of
L. In the upper plots of Figs 3-6, the case n=0 renders the linear variations of K-G, A and
E with D and the constant value v=u; of the ‘basic’ isotropic formulation. The extreme
cases of pure deviatoric (n=1) and pure volumetric damage (n=—1) are represented as
well, together with the parameters evolution for some intermediate positive and negative
values of 7. Variations of K and G in Fig. 3 are represented together since they correspond
to each other within a change of sign in 7, eqns (56a,b).

Figs. 3-7

Some comments on the functional dependencies of the secant parameters are in or-
der. Variations are all monotonic except for A (Fig. 4): extrema may be recorded for
both positive and negative values of 7. Except for K and G (Fig. 3), the plots in
Figs 4-6 also display flex points (change of curvature). The curves of the E evolu-
tion also overlap for the negative values of 7 (Fig. 5). This is the only case with all
curves reaching the same (zero) limit value as damage grows to the maximum, for all
n values. In contrast, for the other material parameters, a discontinuous behavior is
recorded towards full damage: for K and G, Fig. 3, and A, Fig. 4, all plots converge
to zero, as it is obtained for n=0, except for the limit cases with n=41. In the lat-
ter cases, one of the two reference moduli K and G keeps constant, while the other
one decreases linearly with D to zero. Correspondingly, A=K —2/3 G does not, approach
zero, while reaches A, +/AN;=3/(3—2G,/K,) (or 3\, +=E,/(1-2v,)=3 K,) for n=1,
and Ay, - /Ag=—-2/(3 K,/Gy—2) (or 3A™=—F,/(141,)=—2G,) for n=—1. For K,=G,,
Ajp+ /Ag=3 and A, - /Aj=—2, see Fig. 4. The same occurs for v (Fig. 6), where v};,,+=0.5,
for n=1, and v};,,- =—1, for n=—1, coincide with the limit values of v inducing loss of
positive definiteness of the current secant stiffness. Then, for ‘von Mises’ damage, an
incompressible elastic stiffness is obtained in the limit (K/G—00), while for volumetric
damage a ‘non-deviatoric’ secant stiffness is recovered (G/K—o0). A further discontinu-
ity of the limit value of v at maximum damage is also recorded for n=0 since v is always
constant, v=y,, while for the positive and negative values of 7, v approaches separately
the same definiteness bounds v};,,+ and 1};,,- obtained respectively for n=1 and n=-1.

Finally, notice also the important feature that, for the negative values of 7, parameters
A and v become negative within certain ranges of the damage variables. For traditional
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engineering materials the fact that damage may lead to particular microstructural ar-
rangements inducing macroscopically a negative Poisson’s ratio seems quite unlikely to
occur. In this sense mixed volumetric/deviatoric damage with prevailing volumetric com-
ponent (negative 1) should be disregarded in practical applications under concern here by
restricting the actual range of 7 to the interval [0,1], shifting from the ‘(1— D)’ damage
model, to mixed volumetric/prevailing-deviatoric damage, to pure deviatoric ‘von Mises’
damage. Also, the fact that for prevailing deviatoric damage (positive 1) v tends to 0.5 as
damage progresses to the limit, seems mainly appropriate for metallic materials in which
the deviatoric behavior dominates the inelastic process. For other materials (e.g. con-
crete, geomaterials, etc.) one would expect that v—0 at increasing damage. This would
be better achieved by alternative ‘extended’ formulations directly based on E and v (see
end of Section 2.3). This is currently the subject of further research.

A closing comment refers to the relation of this ‘extended’ isotropic damage formula-
tion with some earlier secant holonomic isotropic models for concrete found in the liter-
ature (e.g. Kupfer and Gerstle, 1973; Darwin and Pecknold, 1977). At first sight those
models might seem similar to the formulation presented here because of their ‘secant’
character and of the parameters considered for the evolution of the elastic properties,
namely K and G. However, a closer inspection immediately reveals fundamental dif-
ferences. Those earlier models were generated out of the need of simple explicit (total)
isotropic relations that could be inserted in general finite element codes and used in prac-
tical applications for ‘realistic’ predictions at a reasonable computational cost (at that
time). Basically, they consisted of the linear isotropic secant relation (27a) or (27b), in
which K and G were calculated as explicit functions of the invariants of the prescribed
strain. These functions were chosen in order to fit a set of experimental curves, usually
monotonic plane stress tests for various fixed ratios of the in-plane principal stresses. How-
ever, no theoretical aspects of elastic degradation (e.g. dissipation, irreversibility, etc.)
were taken into consideration. As the result, even if the verification examples would look
satisfactory, a number of fundamental conditions could be violated, and the response of
the model under different loading sequences (especially non-proportional or cyclic) would
be unpredictable and, in some cases, would exhibit excessive or negative energy dissipa-
tion. In fact, in those models G generally appears as a monotonic descending function
of the octhaedral shear strain v, but in order to capture frictional dilatancy of concrete,
K has to be a function of both e, and =, exhibiting first an initial decrease but then a
recovery up to values higher than K|,. In clear contrast to that, the ‘extended’ formulation
proposed here is theoretically consistent (e.g. moduli K and G only decrease, dissipation
is never negative, etc.). At the same time, however, it is recognized that it cannot by
itself produce a realistic description of such a complex material behavior as the general
multiaxial loading of concrete. Further additions will surely be needed to be incorpo-
rated into the model such as anisotropic degradation, irreversible (plastic) deformations
and stiffness recovery due to microcrack closure. The first of these additional features is
developed in Section 4.
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3.4 ‘Extended’ isotropic degradation in the context of CDM

The just described formulation of ‘extended’ isotropic degradation can also be rephrased
in the context of CDM as briefly introduced in Section 2.3. As compared to eqn (19), the

damage-effect tensors A and A, here labeled A, and A, are generalized as follows:

Mo = 0 Py + b Pp = (05 — d¢) Py + 0 s ;
Ao = Ox Py + 06 Pp = (05 — ¢¢) P + ¢ 15,

where ¢, ¢ and their inverses ¢, ¢ are linked to Dy, D, and Ly, L by eqns (28),
(33) and (34). The components of the damage-effect tensors may be conveniently ex-
pressed in terms of the 6x6 matrix representation of Walpole (1984) (in which the fourth-
order symmetric identity I, maps to a 6x6 identity matrix):

(58)

_ (JEK‘EQQEG QEK; &SG QEK; &SG ] " ¢K+2¢G ¢K7 ¢G ¢K7 ¢G -

QBKQ bq QBKJF;‘;G QBK; bq q&KE be ¢K4r32¢c ¢K§ be

- < - - - - 3 3 3
— ¢K7 ¢G ¢K7 ¢G ¢K+2¢G ¢K7 ¢G ¢K7 ¢G ¢K+2¢G
[Aiso] = 3 3 3 b ) [Aiso] = 3 3 3 P . (59)

G G
be ba
_ % L %

Instead of being postulated directly, the isotropic stiffness and compliance of the ‘ex-
tended’ isotropic model, eqn (27), may then be derived from eqn (14) by adopting damage-
effect tensors (58), that is E =A,: AL, Ciey=AL,:Cy:A,,. Also, from eqns (12), (13)
and (58) the corresponding nominal/effective relations for strain and stress, and for their

volumetric and deviatoric parts, are obtained as:

€t = P €yt Og €p ; O =0gOqy+ Oc Tegp;
(60)
Ot = O Oy + &g Op ; € = Pg €etr,y T oy €off,D ;
€eft,v — Pk €y €eft,D — bG €p ; Ocfft,v — K Oy Ocft,D — bG op - (61)

From the latter equation it is apparent that integrity variables ¢, ¢, and their in-
verses ¢, ¢ define separately the linear link between volumetric and deviatoric compo-
nents of effective and nominal stresses and strains (compare to the ‘basic’ isotropic case,
whereby simply € (1—p)=¢ € and oo, (1—p)=¢ o, eqn (21)). Considering next the single-
dissipative model based on constant 7, the expressions above could just be rewritten by
replacing in eqns (58)-(61) power law relations (47), and similar ones for the inverses

¢r=¢'"" and go=¢'"".

4 ‘Extended’ volumetric/deviatoric formulation of
anisotropic damage

Similarly to what has been already commented at the beginning of Section 3 for the
‘extended’ isotropic formulation, the ‘basic’ anisotropic damage formulation briefly men-
tioned in Section 2.4 also displays some limitations since it leads to a restricted form of
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orthotropic material symmetry. This can be seen in various ways. The simplest is perhaps
by considering the particular case in which second-order damage tensors ¢ and ¢ entering
the damage-effect tensors (20) and stiffness and compliance (24) take the isotropic forms
¢=¢ 1, p=¢ 1. Then, as it appears from eqns (19), (20) and (23), (24), the formulation
collapses into the ‘(1— D)’ scalar damage model, which is by itself a restricted form of
isotropic damage. A second argument may follow from a simple count of the number of
material parameters available to characterize anisotropy. Sitting on the principal axes of
damage, the ‘basic’ formulation exhibits five parameters, namely two initial elastic con-
stants plus three principal values of damage, while general orthotropic elasticity would
need nine independent evolving material parameters.

Also, notice that a desirable feature of the ‘extended’ anisotropic formulation based
on the volumetric/deviatoric decomposition should be that of encompassing both the ‘ex-
tended’ isotropic degradation model just described in Section 3, as well as the ‘basic’
anisotropic formulation mentioned in Section 2.4 (Carol et al., 2001a). The ‘extended’
anisotropic formulation developed next accomplishes both requirements and is based on
two alternative product-type decompositions of the damage-effect tensor in isotropic and
anisotropic parts. Secant relations are presented first, initially in a double-dissipative con-
text and subsequently in the final single-dissipative setting. Next, the pseudo-logarithmic
rate of damage is introduced as an extension of the same rate in the ‘basic’ model.
The conjugate thermodynamic forces are derived and the evolution rules for the pseudo-
logarithmic rate are identified so that, finally, all the different terms entering the tangent
stiffness are developed.

4.1 Bi-dissipative anisotropic model (two damage variables): se-
cant relations

Given the requirements above, a starting natural choice is to consider two independent
second-order integrity tensors, one for the volumetric and the other for the deviatoric
components of stiffness and compliance. These new tensors are called here ¢ and ¢, and
their respective inverses ¢ K:(E; and (]SG:(};;. A similar approach has been previously
put forward by He and Curnier (1995), which, based on micromechanical considerations,
introduce two tensor damage variables entering separately the orientation distribution
functions of elongation and bulk moduli.

Introducing these new variables and attempting a generalization of both damage-effect
tensor A, eqn (58a), and A, ., eqn (20a), the following fourth-order damage-effect tensor

AZ( &K@\/E>:[PV+< &G@\/?G)ﬂPD' (62)

could be assumed:
Indeed, by taking ¢r=0¢, I, do=¢s I, this would yield A,,, while ¢=¢,=¢ would

_ & Misos
render A, .. Then, the corresponding secant stiffness E=A:E:A™ would take the form

E= 3K, (5 @0 6x) +2G, (66806~ 5 660 b5 (63)

Here the fourth-order tensor terms within brackets may be interpreted as ‘degraded’
counterparts of the volumetric and deviatoric projection operators Py, and P,. With

bas*
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this general assumption, however, the dual expression of damage-effect tensor A and
compliance C based on the inverses ¢, and ¢, would not correspond to the inverses
of A and E evaluated from eqns (62) and (63). In other words, the arising stiffness and
compliance-based formulations would not be equivalent. But equivalence between strain
and stress-based versions of the theory was one of the main convenient features of the
‘basic’ anisotropic formulation that it would be desirable to preserve also in the present
context.

As a way to obtain this, it is assumed here that bulk and shear integrity tensors are
proportional to each other through the following product-type decomposition assumption:

Pk =P Y ; bc =0 ¥,
where, similarly to the isotropic case, ¢ and ¢ are scalar integrity variables decreasing
from 1 to 0, and 4 is a positive-definite isochoric tensor (namely a tensor with unit
determinant: detep=1). Notice that, with product-type decompositions (64), ¢, and
¢G represent respectively the 1/3 powers of the determinant of ¢, and ¢., namely
bre=(det @)/ and ¢,=(det ¢,)'/3. Initially, 16=I, and its evolution must be subject to
the necessary constraints, so that, in terms of the principal values of 4, the products ¢ x1);
and ¢s¢; (I=1,2,3) keep decreasing from 1 to zero. In product-type scheme (64), the
roles of the damage variables are clearly separated: the scalars ¢, and ¢ are responsible
for the isotropic part of the degradation, while 1) accounts for the anisotropic part. In the
particular case that ¥»=I, the model collapses into the ‘extended’ isotropic formulation of
Section 3.1. If, on the other hand, ¢, =¢ =@, the ‘basic’ anisotropic formulation quoted

in Section 2.4 is recovered.
With assumption (64), the damage-effect tensor (62) takes the following new form

(64)

A= (;5 3¢G'(/J®I+€Z_5G\/E®\/fba

where the absence of major symmetry should be noted. In the principal axes of damage,
this tensor may be represented by the following (non-symmetric) 6 x6 matrix:

(65)

[ fcttle g fefe g, S fey,
Pt oy Ui g, Caifa g,
[A]: ¢K;¢G ’953 ¢K;¢G ’953 ¢K+32¢G ’953 ~ _ (66)
RVA LK)
b \/ Gty
| b /st |

The secant stiffness can either be obtained as E=A:E:A", with A from eqn (65), or directly
from eqns (63), (64). This leads to

1 - - - 1 - - - -
E-3K (3909)+26 ($8Y-590¢) = Aped+26$8%.  (67)
These expressions are similar in form to both relations of E in the ‘extended’ isotropic
model, eqn (27a), and in the ‘basic’ anisotropic damage model, eqn (24a). As in (27a),
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the secant parameters K=¢2 K, and G=¢2 G, are involved in eqn (67a), while the pro-
jection operators Py, P, are replaced by ‘degraded counterparts expressed in terms of
1. Compared instead to eqn (24a), eqn (67b) displays integrity tensor ¢=¢ ) replaced
by its isochoric part 1) and initial isotropic elastic moduli A, and G, substituted by their
secant counterparts A=K —2/3 G=¢2 K,—2/3 ¢& G, and G:qgé G

Through the first analogy remarked above, the damage-effect tensor (65) can also be
expressed in terms of a product-type decomposition in isotropic and anisotropic compo-
nents A, and A, .. In this way, the secant stiffness may be alternatively reexpressed in

iso ani _
terms of £, and A, ;, instead of £, and A:

ani»

A = Aani : Aiso ) l‘ani = \/Eg\/j7 |E = l‘ : [EU : AT = l‘am [E A;Fm ) (68)

where A, is the damage-effect tensor of the ‘extended’ isotropic formulation, eqn (58a),
and [ _Also Ey:AL, is the corresponding degraded isotropic stiffness, eqn (27a)

Desplte belng non-symmetric, due to the underlying product-type decomposition in
isotropic and anisotropic parts, A=A, ;:A,,,, the damage-effect tensor (65) can be quickly
inverted and the inverse A=A"" takes the following dual form in terms of the inverse
integrity isochoric tensor 4, inverse of 1, and isotropic damage variables ¢, and ¢,

inverses of ¢, and ¢

A= 0C gy 1 oo pE B (69)

with corresponding (non-symmetric) matrix representation

+2 -
¢K3¢G1/)1 Py — ¢G¢ ¢K3¢GT/)3

e e i ¢K+2¢G Vo Pk~ ¢ Vs
3 3

b= ¢ ¢ ¢ P20

K3 G qh, K3 G 1)y K3 G gy

4] = beints - (10
S
{ b/ st |

Since the inverse A of A takes a dual structure (it is equal to the transpose of the
tensor obtained by replacing barred with unbarred quantities), the previous stiffness-
based derivation may be equivalently stated in terms of compliance, which involves inverse
integrity damage variables decomposed in product form, ¢=0¢, V¥, Ppo=0¢,¥. A dual
product-type decomposition of A in isotropic and anisotropic components A, , A,,; and
an alternative representation of the secant compliance in terms of C,,, and A, ; instead of

C, and A hold as well:

A= Aiso : Aani ) Aani = ﬁ®[7 C= C tA= Aznl : C so - Aani ) (71)

where A, is defined in eqn (58b) and C,_, in eqn (27b). This leads to compliance relations
dual to the stiffness expressions (67):

1

L=3%

»© P YT PeYP) = -mwewt L by, (12)
(5¥e¥) + 56 ( )=-Fvevt
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Once again these relations bear strict analogy to both expressions (58b) for the ‘extended’
isotropic model and (24b) for the ‘basic’ anisotropic model, where K, G and E, v are
secant parameters related by classical elasticity formulas similar to (16¢,d) and (18a).
By forming the inner products A:A=A:A=I[, and E:C=C:E=I, it can be directly checked
that the expressions of A and C, eqns (69), (72), are indeed the inverses of their stiffness-
based counterparts, A and [E, eqns (65), (67). This confirms that the two derivations are
dual versions of the same formulation. It is a convenient property that the final damage-
effect tensors A and A are decomposed in the product of their isotropic and anisotropic
parts A, A,,; and Ay, A,,;: in this way, both types of damage effects are clearly separated
in the formulation. These convenient properties are due to the postulated product-type
decompositions of both second-order tensors ¢, @ and Pk, P, and fourth-order tensors
A, A. Note also the lack of major symmetry of tensors A and A, and the fact that they
nevertheless are inverse of each other and possess dual structures. Tensors A and A are
homogeneous of degree one in ¢y, @s and @, ¢s. The anisotropic parts A,,; and A,
are similar to the damage-effect tensors of the ‘basic’ formulation, Ay,g, Abas, eqn (20),

with ¢=¢ 1 replaced by 1, and ¢p=¢ 1) replaced by 1, that is
l‘ani = (¢ Hs) : l‘bas = ¢ l‘bas ’ Aani = ((]_5 Hs) : Abas = & Abas : (73)

Substitution of A and A into eqns (12), (13) leads to the following nominal/effective
relations:

= P08 G 1 G fe s o= 200 (10 i - .

o= (o) T b o € = P00 (e ) o 0\ e[

To rewrite relations (74a,c) in much compact form, let us introduce the following tensor
quantities (also needed later in the paper) determined from nominal to effective rela-
tions (12a), (13a) through the damage-effect tensors A,,; and A

(74)

ani»

wi =B e= e o= hy o= o fu (75)

They represent stress and strain acting on an intermediate configuration between nominal
and effective ones (see Fig. 8 later shown). Notice that energy equivalence holds also in
terms of these newly-introduced quantities, namely o:€/2=0.4:€ 4/2=0,,;:€ ,;/2. Also,
these stress/strain quantities are related by fictitious direct and inverse 1sotrop1c secant
laws

Oani — [Eiso:eani ’ 6ani:(]:iso:o-ani 3 |Eis0 A |E Alzo ’ C _Arlrso C AISO ’ (76)
where isotropic moduli E,, C,., are those of eqn (27).

In terms of the intermediate quantities above, the effective strain and stress rela-
tions (74a,c) appear to be anisotropic ‘extended’ versions of both isotropic ‘extended’
relations (60a,c) and ‘basic’ relations (22). Indeed, the volumetric and deviatoric compo-
nents of effective strain and stress become:

6eﬂ“,V:¢K 6ani,V ’ 6efF,D:¢G 6ani,D ; o-effV ¢K am Vo o-effD ¢G ani,D * (77)
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Then, the nominal to effective relations for strain and stress can be written in terms of
the following volumetric/deviatoric sum-type decompositions of intermediate quantities
similar to the effective ones of the ‘basic’ formulation in eqn (22) (with a change from
Apass Pias 10 A,y A, €qn (73)):

ani> “ani»

€ef = QSK 6ani,V + d)G 6ani,D ; Oef — QSK O-ani,V + d)G Uani,D : (78)

Notice also the close similarity between eqns (77), (78) and the corresponding rela-
tions (61), (60a,c) of the ‘extended’ isotropic model. Due to the non-symmetry of A and
A, the inverse effective to nominal relations (74b,d) look instead slightly different and do
not embed a similar separation of effects between volumetric and deviatoric components.

4.2 Single-dissipative anisotropic model (one damage variable):
secant relations

Similarly to Section 3.1, eqn (33), logarithmic damage variables L, and L, are introduced,
alternative to ¢, and ¢, namely L,=—21n ¢, Lo=—2 In ¢,. Then, a single-dissipative
model can be sequentially formulated when the two logarithmic damage variables are taken
proportional to a single logarithmic damage variable L and expressed in terms of constant
n, Lg=(1-n) L, Le=(1+n) L, eqn (48). Next, the variations of ¢, and ¢ are given as
in eqn (47) by power laws ¢,=0¢' ", do=¢'", where ¢ is related to L by L=—21n ¢,
eqn (49d). From eqns (67a), (72a), stiffness and compliance of the anisotropic ‘extended’
model can then be reexpressed as anisotropic enhanced forms of isotropic relations (50):

E= 303K, (39eP) + 026, (38 -5 6 9) ;
) (79)
B ¢2(1 ) 1 ¢2(1+n) . 1
c=5m (Grev)+Gg  (vEv-guew).

This, once more, shows the connection between isotropic and anisotropic versions of the
‘extended’ model.

Alternatively, the enhancement of the ‘extended’ model with respect to the ‘basic’
one may be privileged. Then, by factoring out in (79) the common factors ¢ and ¢?
and reintroducing them into the single integrity tensor ¢=¢ 1 and its inverse ¢p=¢ 1,
the following convenient final forms of stiffness and compliance tensors for the ‘extended’
anisotropic formulation can be derived:

E=3K <%¢®¢)+2G (qb@qb—%qb@qb) = ANpRo+ 2G ¢ ¢ ;
= (5000)+ (680 600) =L o0o+ 6T, "
3K \3 2G - 3 E E -
where, similarly to eqn (24), ¢ and ¢ bring in the anisotropic structure and
K@ K=§PK=¢"K,, G=@G=@Go=¢"G,  (81)
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are enhanced secant bulk and shear moduli different than real current isotropic moduli
K=¢*'"" K, G=¢*1*" G, eqns (29), (47). Secant material parameters

~

- KG K —2G
A=K — IKG p:u (82)

G, E:ﬁ, = =
3K +G 203K + Q)

W o

are also degraded isotropic material parameters corresponding to K and G. Stiffness and
compliance are then always expressed in Valanis-type form, but with degraded parameters
with hats in place of the undamaged ones (compare eqn (80b,d) to expressions (24) of the
‘basic’ formulation).

This particular form of orthotropy is characterized by 6 parameters, that is two un-
damaged isotropic elastic constants, the constant path-parameter n and the three evolving
principal values of ¢ or ¢. In the principal axes of damage, the matrix representation
of the compliance tensor C in terms of E and v, eqn (80d), may be compared to the
9-parameter matrix representation of an hyperelastic orthotropic compliance C_ ;. Using
the 6x6 matrix representation introduced and discussed by Walpole (1984) in his eqn (45)
(in which stress and strain tensors map to six-component vectors embedding the same
V/2 factor in the shear components), the 9 orthotropic engineering coefficients embedded
in eqn (80d) may be expressed as follows:

r 1 _vo _wms 7
Eq Es E3
_vy 1 _ w3 <9 £
Ey E, Es EI :¢1E, 1=1,2,3;
_va1 _wvz 1
Ey B, E3 a1 A _ . . .
[C ]: : GIJ_¢I¢JG7 I7J_172:273:371: (83)
orth 1 ) _
3 by .
G2 X v, ==L, J#1=1,2,3.
2Ga3 1
1
L 2G31 4

Dependence from 7 in eqn (83b-d) is hidden in E, G, 1, according to eqns (81), (82b,c).
Note that, by setting n=0in (81), K=K, and G=G,, so that E=E,, »=1, and the material
coefficients of the 5-parameter ‘basic’ formulation are obtained. On the other hand, for
0<n<1, damage progresses faster for the shear modulus than for the bulk modulus, and
the opposite occurs for —1<n<0. In the limit cases n=1 and n=-—1, the model only
degrades, respectively, the shear and bulk moduli entering stiffness and compliance (79).
Also, when n=0 and ¢ becomes spherical, ¢=¢ 1, it is apparent that the ‘extended’ model
collapses into the ‘basic’ isotropic degradation (namely the classical ‘((1-D)’ scalar damage
model).

As a final comment on the secant relations, notice that, although presenting appar-
ently a similar power structure, the present secant relations are different than those of
Valanis-type provided in the fabric elasticity model by Zysset and Curnier (1995). In
that case an arbitrary power of the fabric tensor is introduced in order to allow a further
degree of freedom available e.g. for calibration purposes, while keeping the homogeneity
property of the elastic moduli. In our damage formulation this would correspond to a
‘basic’ formulation in which the integrity tensor, or its inverse, were raised to arbitrary
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powers. Such option is certainly possible since it is mainly a matter of choice of the basic
underlying damage variable. However, this does not bring a change in the structure of
the secant stiffness and compliance, which are always of the Valanis-type. So, it can be
concluded that Zysset and Curnier (1995) fabric model and our ‘basic’ secant damage
model correspond to each other (in the resulting stiffness and compliance relations) at
any given state. On the other hand, the present ‘extended’ model, as it is apparent from
eqn (80), though still resulting in a Valanis-type structure, is different from that of Zysset
and Curnier (1995) (and different from the ‘basic’ one in Carol et al., 2001a), since the
additional degree of freedom provided by parameter n allows to assign different weights
to isotropic volumetric and deviatoric damage components as discussed above. Also, the
two modular product forms of damage and damage-effect tensors reflect themselves in
a clear separation of effects between isotropic/anisotropic and ‘basic’/‘extended’ damage
components in the final engineering moduli. This latter interpretation of the ‘extended’
model is further pursued in the next section.

4.3 Alternative decomposition of the damage-effect tensors

Final stiffness and compliance expressions (80) show an underlying second possible de-

composition of the damage-effect tensors A and A. While previous decompositions in
isotropic and anisotropic parts, eqns (68a), (71a), reflect the extension from ‘extended’
isotropy to ‘extended’ anisotropy, this new decomposition represents the enhancement
from ‘basic’ to ‘extended’ anisotropy and can be formulated only in the single-dissipative
context introduced in Section 3.2.

By factoring out factors ¢ or ¢ from A, and A, eqn (58), and sending them to A

is0? ani
and A,,;, eqn (73), the damage-effect tensors can be alternatively decomposed in product
form as:

A

A = Aani : l‘iso = Abas : l‘iso ; A= Aiso : Aani = [A‘iso : Abas ’ (84)

where damage-effect tensors A, ., A, are those entering the ‘basic’ formulation, eqn (20),
and A, A, form, with A, A

50 an enhanced isotropic damage-effect counterpart of
eqn (73):

is0?

>0

iso — (d) Hs) : Aiso = d) Aiso = é*ﬂ [PV =+ an IPD;
Zb‘iso = (él]s) : Aiso = & Aiso = ¢—77 [PV + ¢TI |PD'

Tensors f&iso and A, would yield isotropic stiffness E,, and compliance C,, embedding

parameters with hats, eqns (81), (82):

(85)

R R 1 1
SOZAEO:CU:AiSOZ 3—[%[PV+%[PD (86)

A

|EiSO = ;iso . [EU :;;IS‘O = 3K IPV + 2GA IPD7 @i
The final expressions of damage-effect tensors (65) and (69) interpreted on the light of
decompositions (84b,d), (85), (20) become:

A= getv i ome: a=" "D a0g1 e 6o, (67
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Comparing eqns (80b,d) and (15), the effects of the ‘basic’ contribution (introducing
integrity tensor ¢ and its inverse ¢ in place of I) and isotropic-enhanced contribution
(inserting hatted parameters in place of undamaged ones) become apparent. Indeed,
through product decompositions (84), secant stiffness and compliance may be alternatively
represented as:

E=A :[E(]:AT = Aani: [Eiso :Agni = Abas: [AEiso : _gas;

A (89)
C:AT:[E(]:A = A, '(]::iso:AaniZAT .CiSOZA

ani* bas* bas »

N

where in the last decompositions Ay, , Ay, act on isotropic tensors By, Cig,.

Isotropic stiffness and compliance E;, and C,,, also enter fictitious isotropic secant
relations between additional intermediate stress and strain quantities oy, €, alternative
to o,,;, €,, and defined with A, A,,. as the effective stress and strain in the ‘basic’

formulation, eqn (22):
Obas — [Eiso * €has €has = Ciso * Opas - (89)

Compare to constitutive relations between o,,;, €,,;, eqn (76a,b). From the alternative
decompositions (84), the following relations between effective and intermediate quantities
also hold:

€off — Aizo " €ani — Aizo " €pas 3 Oeft — Aiso P Oani — Aiso  Obas - (90)

Furthermore, since A, A and A, A are just proportional to each other, eqn (85),

1507 180 1507 180
intermediate stress and strain quantities oy, €,,, and o, €,,; are also just related by:

€bas — ((]_SHS) P €ani — & €ani ; Obas = (¢|]s) 0 = ¢ Oani - (91)

This is obviously consistent with relations (85). Then, energy equivalence holds in terms
of nominal, effective and of both intermediate stress and strain quantities involved in
eqns (90), (91): 0:€/2=0,4:€ 5/2=0,,;:€ 4i/2=0} .5 € pas/ 2. The same is true for the vol-
umetric and deviatoric energy components. Equality o, €,../2=0} . €1../2 also holds,
which will be used later in conjunction with the definition of the thermodynamic force
—Y of the ‘extended’ model. Another interesting feature is that, since o,,;, €,,; and oy,
€, are respectively related by isotropic stiffness and compliance E,., C.,, eqn (76), and
Ei., Ci, eqn (89), all properties of effective stress and strain in the ‘basic’ formulation
(such as e.g. coaxiality) are maintained here also for the intermediate quantities o,_;,
€., and oy, €,,,. Such properties are essential to many of the characteristics of the
pseudo-logarithmic damage rate, which is introduced next.

A sketch of the different transformations between nominal, intermediate and effective
stress/strain quantities is depicted in Fig. 8 for the compliance stress to strain relations
in terms of the various damage-effect tensors A. A similar reverse scheme also applies to

the stiffness strain to stress relations in terms of the various dual damage-effect tensors A.

Fig. 8
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4.4 Pseudo-logarithmic rate of damage for the ‘extended’ for-
mulation

In view of completing the ‘extended’ formulation of anisotropic damage, the pseudo-
logarithmic rate introduced in eqn (26a,b) for the ‘basic’ formulation is now generalized
to the ‘extended’ case. This allows to derive a conjugate thermodynamic force with
properties complementary to those brought about by eqn (26c¢).

Taking the dissipation rate in eqns (3) and (5a), differentiation of the compliance C,
eqn (72), yields:

-1 . du . Ju . Ju .
where 5 2
u K LN\,
@a—gzw-a),
ou| _ ¢ 2= Y o?)
sl = & (ne v -gwier) (99)
g—;a:—%(¢:a)a+1+ya-¢-a.

Logarithmic rates of bulk and shear isotropic scalar damage variables can be evaluated
as in eqn (31): Q=0 LK/Q, ba=0c LG/Q, where, in the single-dissipative setting, L,
and L., are taken proportional to the single logarithmic isotropic scalar damage variable
L, eqn (48), so that L=(1—n) L, Lgy=(14+n) L. In a similar way, the (non-holonomic)
pseudo-logarithmic rate fi of the isochoric integrity tensor 4 is introduced analogously to
eqn (26a,b):

A= 2h b =2 P b b= b= e (00)

Replacing rates éK, éG and 9, eqn (94d), and making use of eqn (48), the dissipation
rate d, eqns (92), (93), may be written as

. . 1 o
d:(U+77(UD_UV))L+<§0'bas'€bas>3#: (95)
where
1 Lty LI o
5 Obas "€bas = 5 \ 75 WOhas Opas T 7 5 Opyg
=5 ( A tre,,, €.+ 2G €2, ),

embedding parameters with hats, replaces o,,;-€,.:/2, since they coincide, and, due to
energy equivalence (Section 4.3), volumetric and deviatoric elastic energies may be also
defined in terms of volumetric components and deviatoric parts of effective quantities
0.5y €bas and in terms of elastic moduli with hats K, G:

1Ub2,v - 1 Ohas,p * Obas,D A
Uy = 5 I§ = 5 9K 6t2)as,V 3 Up = 5 aSQ—C;aS = GGbas,D “ €bas,D - (97)
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Alternatively uy=uyo, up=up, and u=uy+up=uy=uy+up, could be used instead
to introduce in the first terms of eqn (95) the real effective stress and strain quanti-
ties (75), (77), (78) and the initial elastic moduli K, G,. Expressions (95), (97) privilege
to show the enhancement of the ‘extended’ model with respect to the previous ‘basic’ one.

Now, the property is crucial that, since @ remains isochoric, the pseudo-logarithmic
rate g1 is purely deviatoric, i.e. tr =0 (see Carol et al., 2001a, Appendix A). Indeed,
from the derivative of the third invariant of %, namely 0 (detv)/0p=(det 1) 9", one

obtains (det 1)=(det 1) tr (ﬁf(/)ﬁ), so that, since det =1, (det 1/)=0 and eqn (94b)
yields tr t=0. Furthermore, the rate fi turns out to be the deviatoric part of the pseudo-
logarithmic rate (26b), which can also be introduced in the present context. Indeed, the
product-type decompositions of the integrity tensor ¢=¢ 1 and of its inverse ¢p=a¢ 1 yield
d=dp+¢ 1. Also, similarly to eqn (31), eqn (49) renders 2 ¢/¢p=L and definition (94b)
leads to:

L:2Abas¢:2\/g¢\/g:[11+ﬁ (98)
Then, the previous rates L and [ turn out to be respectively the volumetric component
and deviatoric part of L, namely:

L; Ly=L-L,I=/. (99)

Notice that, as in the ‘basic’ formulation, the volumetric component and deviatoric part
of the pseudo-logarithmic rate L are respectively attached to the isotropic and to the
anisotropic parts of stiffness degradation (Carol et al., 2001a). Then, product-type de-
compositions of isotropic and anisotropic effects in damage and damage-effect tensors
mirror themselves in the classical (sum-type) decomposition in volumetric and deviatoric
parts of the convenient pseudo-logarithmic rate. Notice that, while L is an exact rate,
ft and L are not. Furthermore, since ft is purely deviatoric, its double contraction with
another second-order symmetric tensor, such as the force o, ,,-€,,./2 in eqn (95), will only
activate the deviatoric part of that tensor, i.e. any volumetric part may be added to that
tensor without changing the resulting contraction. Based on this property, the force tensor
Oas €bas/ 2 10 the second product addend of the dissipation rate (95) can be replaced by
the deviatoric part of a single force tensor which possesses as volumetric component the
same force term u+n (up—uy, ) already appearing in the first product addend. This leads
to the right definition of the force associated to the pseudo-logarithmic rate L=1 I+,
Indeed, the thermodynamic force conjugate to the rate L can be promptly evaluated
from the derivative of the elastic energy at constant stress, eqn (3c). In this respect, due
to the structure of the final secant stiffness and compliance (80) embedding parameters
with hats and tensors ¢, ¢, one has first terms as in the ‘basic’ formulation by keeping
constant the parameters with hats (which replace the undamaged material parameters)
and second new additional terms accounting for the variation of the parameters above.

In that respect, notice that these latter derivatives may be worked-out through the chain
rule from the definitions of ¢=(det ¢)/3 and p=(det ¢)'/3:

_ Lo 9 1
0P dp 3

% 6. (100)

Q’)‘Q)
S
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So, for K=¢=2" K, and 1/K=¢"2"/ K,;:

OK _ oK 09 _ 2 . O/K)_9(/K) 9 _
96 05 op  31H 9 ap 0o 0d

Similarly, for G=¢?" G, and 1/G=¢*"/G,y:

9 1 _
_In 0. 101
377K¢ (101)

G 9G 89 2 . 0(1/G)  8(1/G) 9y 2 1 -
R : = =Sy 102
06 05 96 3" “og 06 op 3¢ (102)
and accordingly for the derivatives of A and ©/F, eqn (82):
oA 2 3A+4G Av/E) 2 2—b
o __Z — o = — . ) 1

Note that, to get the partial derivatives above with respect to ¢ instead of ¢ (or vice versa
¢ instead of @) it is enough to change sign in the resulting expressions and substitute
there ¢ with ¢ (or vice versa ¢ with @), e.g. 0K /d¢p=2/3nK ¢.

Then, the derivative of u=o:C:0/2 with respect to ¢ at constant stress can be evalu-
ated by taking for C compliance expression (80d):

ou 1% 1+
%"__E(d)‘a)wr F 70 (104)
+ﬂ<_2—’9<¢-a)2+”%<a.¢)2>¢
3 3E ' E '

Let us also record for later use the analogous derivative of the volumetric energy compo-

nent:
Juy,

%Uzgikqs:a(a—g(qs:aw). (105)

Now, although L does not exist in general as a finite quantity, derivatives (104), (105)
may be further developed with respect to L through a formal use of the chain rule and by
:f/2, J¢ /0L may be evaluated as A,,,/2. Then,
from eqn (104), the following conjugate force associated to L in the dissipation rate
d=(=Y): L can be derived:

taking into account that, since (ﬁzzl\bas

_ou
-~ IL

1
= 5 Ohas " €bas T
g

-y up —uy) T, (106)

3

where o0 ,.-€,,./2 is given in eqn (96). Also, for later use, let us record that eqn (105)

translates to:
1 1

ou
B—I‘J/ = 5 Q—f( tr Ohas (o-bas -1 o-bas,V) : (107)

o
If compared to its counterpart —Y, . in the ‘basic’ formulation, eqn (26¢), the con-
jugate force —Y, eqn (106), exhibits formally only an additional spherical term which

reduces its volumetric part depending on the coefficient 1. This additional spherical
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term can be alternatively written solely in terms of u and uy just by noticing that
up—uy=u—2uy,. However, notice also that, since ay,,-€,,,/2 is expressed by eqn (96)
in terms of parameters with hats, eqns (81), (82), as soon as n#0, 6y, €1,./2 also differs
from —Y.s=0est pas € et bas/ 2> €qn (26a), since in =Y, the undamaged parameters are
involved. In the special case that n=0, this difference disappears since hatted parameters
collapse into undamaged ones. Also, the additional spherical term vanishes and the model
collapses into the ‘basic’ one. Furthermore, by looking at the volumetric and deviatoric
components of the conjugate force (106), we have:

tr(=Y) u 7 1 u
—yv:ngJrg(UD—Uv); —yD:§ bas'ebas—gl- (108)
Then, the deviatoric part of the conjugate force is ‘formally’ the same as that of the ‘basic’
formulation, while the volumetric component is modified when 1#£0, compare eqn (108)

to the volumetric and deviatoric components of —Y, . from eqn (26¢):

tr(— u 1 u
_ybas,V = % = g ; _ybas,D = 5 aeff,bas ) 6eff,bas - g I. (109)
With respect to this formal analogy, the principal directions of the conjugate force are
still those of the ‘basic’ intermediate stress or strain quantities, while its principal values
are modified by the difference in volumetric terms.
Finally, the dissipation rate (95) may also be rewritten as the sum of volumetric and
deviatoric contributions, of which only the first one formally changes with respect to the
‘basic’ formulation:

u

4 I) Ly . (110)

d:dV+dD:(u+77(uD_uV))L+<§ Ubas'ebas_?)

Notice that, as commented above, the additional spherical term in the force premultiplying
fD in eqn (110), as compared to eqn (95), does not change the final value of d. However,
the definition (106) and resulting dissipation rate (110) are the correct expressions for
—Y and d in the present ‘extended’ model.

4.5 Tangent stiffness of the ‘extended’ anisotropic formulation

To complete the ‘extended’ formulation, the various ingredients entering the tangent stiff-
ness E,, in eqn (8b,c) can now be derived. Notice that what has been already de-
veloped about loading function and pseudo-logarithmic damage rule for the ‘basic’ for-
mulation (Carol et al., 2001a,b) is also valid for the ‘extended’ formulation. The fact
that the conjugate forces slightly differ and have a reduced volumetric component does
not change the geometric interpretation of the loading function in the principal force
space (—V1,—Ys,—)s3), the identification of the volumetric and deviatoric parts of the
pseudo-logarithmic damage rule M=M,+M, for the isotropic and anisotropic dam-
age growths, and the restrictions on the pseudo-logarithmic damage rule orientation to
assure positive dissipation. Consideration of the positiveness condition for the projection
of the compliance rate on a fixed orientation, and of the inverse of the Young’s orthotropic
moduli in the principal axes of damage, leads to the sufficient condition that n>0. This
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condition coincides with that already stated in Section 3.3, based on different arguments,
and therefore it seems reasonable to restrict the value of 7 to the interval [0,1].

To develop the tangent stiffness, let us first postulate that the current elastic domain
is defined in the space of the thermodynamic forces —Y by assuming the following rather
general isotropic hardening/softening condition generalizing eqn (40b):

F(-Y,D) = f(-Y) - (D) <0. (111)

Here the function f(—Q)) specifies the shape of the damage domain, which is left general
at this stage and includes possibly both associative and non-associative flow rules; r(D) is
the hardening/softening function, normally expressed in terms of the underlying damage

variables ¢ or ¢». The rates of the latter variables depend eventually on L=AM and thus
on the inelastic multiplier A. So, finally function 7 bears an implicit dependence on the
cumulative value of A\. The model would then be characterized by specific choices of the
functions above, according to the material behavior to be described. Concerning f(—)),
as a first approach, such function may be expressed in terms of the invariants of —Y so
that, as remarked above, the surface F'(—))=0 may be represented in the space of the
principal thermodynamic forces. Consequently, the gradient N of the loading function in
the conjugate force space is coaxial with —) (and so also e.g. with oy, €,,)-

Note also that, as =), eqn (106), F' may be expressed in terms of the different in-
termediate stress or strain quantities. For instance, for the ease of representation and
implementation as an update of the ‘basic’ model, the ‘basic’ effective quantities oy,
€. may be conveniently adopted. The same ‘updating’ concept also applies to the vari-
ous ingredients of the theory: the characteristic terms are obtained by evaluating the new
additional addends completing the expressions already available from the ‘basic’ formu-
lation. As remarked before in conjunction with the development of the thermodynamic
forces (104)-(107), this is due to the structure of the final secant stiffness and compli-
ance (80) which embed parameters with hats and tensors ¢, ¢. The expressions of the
‘basic’ formulation were given in Carol et al. (2001a,b) and Rizzi and Carol (2001) and
are recalled here for the sake of completeness (labeled by script bas). The additional
terms completing the expressions of the ‘extended’” model are derived here and marked
by superscript *.

The basic ingredients of the tangent stiffness (8¢) to be evaluated are the gradients n,
m and the hardening parameters H, H. The derivation makes use of derivatives (100)-
(103) and also of the following ‘enhanced’ addend derivatives:

I(=I)|" 7 n (2—19 1+ 0 )
=21® (€pps— 2€1sy ) =210 [~ ———troy,, I+ —— 01, 112
2o |3 (€bes— 2€1asv) =3 TR = (112)
ocl” oc|' 1 n( 2-p 1+
= =2 22 _ I; 113
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A=V _ o= 1,

oL |p 0¢ |5 2 ™
n 2—-v 1+
= | m = tr Oy O + —— O | Q1 114
(A e ) (11
i 2—v 1+7v 2) n?
+ - I@ |~ tr O Opps + —=— O | + —ul®I,
6 ( 3 f bas b g % 9

which are used respectively to develop the expressions of n, m and H. Notice that the last
derivative has been developed from eqn (106) by taking into account that up—uy,=u—2 uy,
and then by using derivatives (106), (107).

Let us consider first the gradient n of the loading surface in stress space, as obtained
from eqn (7a):

_OF | OF | 0(=Y)| 00| ., O=Y)| B .
n = %/\— EINEEMNEE: /\—N. Do )\.Abas—nbasqtn ;o (115)
Npas = — QVTU ((N:o-bas) ¢+trabas \/;N\/;) (116)
145
+ 2+EV (\/;'N'Ubas'\/;_'_\/;'o’bas"/\['\/;);
. 1 2—-7v 1+v
n :§tr./\f (—3—Etr0'basq.’)+ 7 \/;-abas-\/;> . (117)

Next, the flow rule m of the degrading strain rate can be determined from eqns (6d)
and (7d):

oC .
mz(a—L:M>:a:mbas—i—m; (118)

((M:O'bas)qb—i-trabas \/;M\/;)
i 2@1) (ﬁ'M'UbaS'\/g+ﬁ'abas'M'ﬁ);
m* = 7 tr M (—%trabas¢+

3 125\/&%%-\/8) . (120)

Notice that, according to eqns (6b), (7b) and (6d), (7d), it is confirmed that n and
m, eqns (115)-(117) and (118)-(120), are expressed by the same formulas within a shift
between rules ' and M.
Finally, the hardening parameter H of a stress-based formulation can be determined
from eqn (9¢) through the use of the chain rule:
oF or of|

H=-21 =g, H =
x|, ox T

(119)

a(_y) . __ rybas * .
~ 3 U_—N. i ‘G.M_Hf + Hj; (121)

H?as - é ((N : Ubas) (M : Ubas) +tr Ohas tr (N " Obas * M))
(122)
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1
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Y
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Hf = — gtrM (— 25 tr oy, N:Ubas_‘_T .N’:abis>
2—0 1+7
TN <— i trabasM:abaSnLiM:aans) (123)
6 3E E
7
— g trM tr N .

Similarly, the strain-based hardening parameter H may be obtained either from eqn (9b),
as H=H+n: E:m, or from eqn (9a), through a dual strain-based derivation (Carol et al.,
1994):

— OF ar - _ of I(=Y) -~ N
H=—|=—+H,; =——| =-N_: : =H*+ H;; (124
ax|ax T T Ty, N =or JM=HS T s (124)
Hbs = § ((./\f:e ) (M €,,) ttrey, tr(N-e M))
f 4 bas bas bas bas ( 19 5)
+ G tr(N el M);
_ A+4G R
H;:gtrM<—¥ trep,, N i€y +2G N:eb2as>
—I—gtr./\f (—M trebasM:ebas—l—QGM:egaS) (126)
0’
9 U trM tr N .

The interchange of roles between the hatted elastic parameters and between the interme-
diate ‘basic’ stress and strain in the relations of H and H may be read directly through
the correspondences in the dual expressions of o ,4-€,,./2 in eqn (96).

In sum, the tangent stiffness E,,, of the ‘extended’ model is obtained by substituting
in eqn (8c) expressions (115)-(117), (118)-(120) and secant stiffness E, eqn (80b), in the
numerator and hardening parameter (124)-(126) in the denominator.

5 Concluding remarks

An ‘extended’ formulation of anisotropic elastic damage in initially-isotropic materials
has been presented. It is based on symmetric second-order damage tensors and on the
underlying volumetric/deviatoric decomposition of the isotropic reference stiffness and
compliance. This new formulation includes as particular cases the ‘extended’ isotropic
version of the model and the previously-developed ‘basic’ model.

A major new feature of the model is the introduction of a path-parameter n allow-
ing to assign different weights to bulk and shear damage components. Additionally, two
isotropic elastic constants and three evolving eigenvalues of the second-order damage ten-
sor form a total of six parameters available to characterize the nine engineering material
parameters entering the secant stiffness and compliance relations. The latter correspond
to a restricted form of orthotropic material symmetry. Complementary to that, a loading
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function and hardening/softening function must also be prescribed to complete an asso-
ciative formulation, otherwise a damage evolution rule must also be provided separately.

A second important characteristic of the model are the underlying product-type de-
compositions of damage and damage-effect tensors in isotropic and anisotropic parts,
which reflect themselves in a similar decomposition of effects of the consequent secant
moduli. The product decompositions also allow easy inversion of the tensors involved,
which preserve a dual structure between stiffness- and compliance-based versions of the
formulation. A pseudo-logarithmic rate of damage is also introduced as in the ‘basic’
formulation and allows to derive a convenient thermodynamic force useful to base loading
functions and damage evolution rules. This allows to interpret the present ‘extended’
formulation as an update of the ‘basic’ one.

In this respect, although the present framework has not been finalized to the level of
detailing a real constitutive model and accomplishing its implementation in a constitutive
driver, the new features presented here are crucial to direct the subsequent development
of the constitutive model on many important aspects as e.g. that of selecting the most
appropriate isotropic reference moduli to work with, that of seeking loading and harden-
ing/softening functions describing reasonable responses of the model for simple loading
cases (e.g. uniaxial tension, pure shear, etc.), that of possibly expressing the model re-
sponse in analytic form in terms of parameters with clear physical meaning (e.g. peak
strength and specific fracture-energy), that of considering the different behaviors in ten-
sion/compression, and so on, namely all the aspects that have been previously developed
for the ‘basic’ formulation. These issues are at present the concern of further investigation.

There are close analogies of the present formulation of elastic damage to the affine
mappings in finite deformation analysis. Indeed, the relationship between damage and
geometrical concepts is not surprising, if the interpretation of damage as reduction of
stress-carrying area is considered (e.g. Murakami, 1988; Park and Voyiadjis, 1998; Stein-
mann and Carol, 1998). According to the product-type decompositions, the various inter-
mediate stress/strain quantities introduced here define stress and strain acting on different
intermediate configurations that involve isotropic material behavior (Fig. 8). Taking the
effective as the reference configuration, they might be interpreted formally as the result
of a ‘pull-back’ operation from the nominal configuration or of a ‘push-forward” operation
from the effective configuration. Furthermore, the pseudo-logarithmic rate of damage has
close analogy to the rate of deformation tensor in finite deformations, and so does the
thermodynamic force conjugate to such damage rate to the corresponding stress measure.
The formal and practical analogies between these two settings have not been the focus of
the present paper but certainly could be the subject of future elaborations.

Also, more general forms of orthotropic degradation based on two coaxial damage
tensors for the bulk and shear moduli or on alternative propositions of the damage-effect
tensors could be explored, still with the requirement to achieve dual derivations for the
stress- and strain-based formulations.
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Lohn= n=tgl

L

Figure 1: Single-dissipative straight paths in the plane of logarithmic damage variables
L, and L,. The slope of the linear paths is defined by constant parameter —1<7n<1,
where n=(5,—0f)/2. The ‘basic’ formulation corresponds to n=0 (S,=p,=1), while
pure volumetric and pure deviatoric damage are obtained respectively for n=—1 (=2,

Be=0) and n=1 (S,=0, B5=2).
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Figure 2: Relation between constants S,=1-n, f,=14+n and parameter —1<n<1. Pa-
rameters S5 and [ satisfy the constraint S5+ 8,=2. The ‘basic’ formulation corresponds
to n=0 (Sx=Ps=1), while pure volumetric and pure deviatoric damage are obtained re-

spectively for n=—1 (8x=2, ,=0) and n=1 (8,=0, B5=2).
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Figure 3: Variation of bulk modulus K/K,=(1—D)'""=e~(1="ML (left axis) and shear
modulus G /Gy=(1—D)"*1=e~(+ML (vight axis) with respect to (a) scalar damage variable
D=1—e L and (b) logarithmic damage variable L=—In(1—D), for different values of

parameter —1<n<1 (n=1: pure deviatoric damage; n=0: ‘basic’ or ‘(1
n=—1: pure volumetric damage).
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Figure 4: Variation of Lamé’s constant A/A, with respect to (a) scalar damage variable
D=1—e"% eqn (56¢), and (b) logarithmic damage variable L=—In (1—D), for different
values of parameter —1<n<1 (n=1: pure deviatoric damage; n=0: ‘basic’ or ‘(1— D)’
damage; n=—1: pure volumetric damage); K,=G,=3 A;=4/9 E,, v,=0.125.
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Figure 5: Variation of Young’s modulus E/E,, with respect to (a) scalar damage variable
D=1—e"L eqn (56d), and (b) logarithmic damage variable L=—In (1—D), for different
values of parameter —1<n<1 (n=1: pure deviatoric damage; n=0: ‘basic’ or ‘(1— D)’
damage; n=—1: pure volumetric damage); K,=G,=3 A\j=4/9 E,, v,=0.125.
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Figure 6: Variation of Poisson’s ratio v with respect to (a) scalar damage variable
D=1—e"" eqn (56e), and (b) logarithmic damage variable L=—In (1—D), for different
values of parameter —1<n<1 (n=1: pure deviatoric damage; n=0: ‘basic’ or ‘(1— D)’
damage; n=—1: pure volumetric damage); K,=G,=3 A;=4/9 E,, v,=0.125.
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Figure 7: Variation of (a) Lamé’s constant A/A, (b) Young’s modulus E/E, and Poisson’s
ratio v with respect to logarithmic damage variable L=—In (1—D), for different values
of parameter —1<n<1 (n=1: pure deviatoric damage; n=0: ‘basic’ or ‘(1— D)’ damage;
n=—1: pure volumetric damage); ,=0.18.
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Figure 8: Compliance scheme of the stress to strain relations involving nominal, interme-
diate and effective stress and strain quantities. A dual stiffness scheme of the opposite
strain to stress relations would apply with reverse arrows and the various damage-effect

tensors A replaced by A=A"".



