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Abstract. In the present work an isotropic damage model for concrete accounting sep-
arately for progressive degradation of the elastic properties under prevailing tension and
compression stress states is considered in both local and nonlocal forms. The possible oc-
currence of material instabilities in the form of strain localization is analyzed. For the local
model, the bifurcation conditions at the onset of strain localization are first solved in terms
of the critical values of the damage variables. Next, in order to avoid ill-posedness of the
initial-boundary value problem, two nonlocal enhancements are provided through integral
averaging or gradient dependency. The regularizing properties of both nonlocal formula-
tions are explored. The expressions of the characteristic lengths implicitly introduced by the
nonlocal enhancements are derived through a one-dimensional wave propagation analysis.
Such results are confirmed by preliminary numerical FE simulations of the quasi-static
response of a tensile bar analyzed with the nonlocal damage model.
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1 INTRODUCTION

The inelastic phenomena involved in the macroscopic behavior of quasi-brittle materi-
als such as concrete and rocks can be modeled in the framework of Continuum Damage
Mechanics. The available formulations of elastic-damage constitutive models cover a wide
variety of material responses, such as for example damage-induced anisotropy and stiff-
ness recovery due to microcrack closure upon stress reversal (unilateral damage). The
formulation of elastic-damage models is often completed by coupling them to plasticity
models in view of a comprehensive modeling of the material behavior under general two
and three-dimensional stress states involving arbitrary degrees of confinement, when sig-
nificant irreversible strains may be recorded after unloading. Among many others we
quote here the models proposed in [1, 2, 3, 4, 5, 6, 7, 8].

In the present work we focus our attention to the modeling of pure elastic-damage
in isotropic materials displaying different behaviors in tension/compression. A recently
proposed isotropic damage model [9] is reconsidered. This model is characterized by the
definition of two scalar damage variables, one devoted to describe damage due to prevail-
ing tension stress states and the other accounting for damage under prevailing compression
stress states. Two intersecting loading surfaces, both evolving with damage, define the
current elastic domain in stress (or strain) space; nonlinear hardening/softening is gov-
erned by two damage functions, one for the tension and the other for the compression
states, which possess in general an hardening branch followed by a softening post-peak
tail. The material parameters are conveniently introduced to control separately the peak
strengths and hardening/softening slopes for both the behaviors in tension and compres-
sion.

As widely studied, see e.g. [10, 11, 12, 13, 14], damage induced softening causes ill-
posedness of the initial-boundary value problem and various regularization approaches
have been proposed in the literature [15, 16, 17, 18, 19]. In this work, in view of regulariz-
ing the above described elastic-damage model, two different forms of nonlocal enrichment
are considered, which give rise to the following two models: the first one is an integral
nonlocal damage model in which the local strain invariants entering the loading functions
are substituted by their spatially-weighted averages [19]; the second one is a gradient-
enhanced damage model in which the loading functions are enriched as in [18] by adding
extra-terms which contain the spatial laplacians of the damage variables. The conditions
under which bifurcated solutions of the initial-boundary value problem become possible
[20, 21, 22, 23, 24] are first established for the local damage model. Particular attention is
devoted to the instabilities arising from loading paths inducing the activation of only one
damage mechanism or the simultaneous activation of both damage mechanisms (namely
from stress states sticked to the corners of the current elastic domain); the instability con-
ditions are solved in terms of the critical values of the damage variables. Then, the two
nonlocal models are considered and compared in terms of their regularizing properties and
bifurcation predictions. Since two different damage mechanisms are present, two different
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internal length scales (one relevant to tension and the other to compression stress states)
are introduced by the nonlocal models. This seems to agree with experimental evidences
on the post-peak behavior of concrete specimens under uniaxial tension and compression
conditions, showing widths of the zones where the strains are highly localized which may
be different of one order of magnitude in tension and compression [25, 26].

It is shown that both nonlocal enhancements allow to restore the well-posedness of
the initial-boundary value problem and avoid strain localization into bands of vanishing
width upon mesh refinement. Further insight into the regularizing properties of both
nonlocal enhancements is given by a one-dimensional wave propagation analysis which
allows to define the width of the localization zone. Quasi-static numerical FE simulations
performed for this one-dimensional case with the nonlocal damage model are in agreement
with the theoretical predictions.

2 BI-DISSIPATIVE LOCAL DAMAGE MODEL

The isotropic free energy density function ψ of the material is defined as

ψ = ψ(ε, Dt, Dc) =
1

2

(
2µ e : e +K+

(
tr+ ε

)2
+K−

(
tr− ε

)2)
(1)

with 


µ = µ0 (1 −Dt) (1−Dc)

K+ = K0 (1 −Dt) (1−Dc)

K− = K0 (1 −Dc)

(2)

In eqns (1) and (2) Dt and Dc are the damage variables in tension and compression,
respectively, both varying in the interval [0,1[, µ0 is the initial shear modulus, K0 is the
initial bulk modulus, while µ, K+ and K− are their damaged counterparts, the latter two,
respectively, in the tension (tr ε>0) and compression (tr ε<0) subdomains; ε is the small
strain tensor and e is its deviatoric part. Symbols tr+ ε and tr− ε denote the positive and
negative parts of the trace of the strain tensor, tr ε=I:ε, where I is the 2nd-order identity
tensor:

tr+ ε =
tr ε + |tr ε|

2
, tr− ε =

tr ε − |tr ε|
2

(3)

The stress tensor σ is given by the following state equation:

σ =
∂ψ

∂ε

∣∣∣∣
Dt,Dc

= 2µ e +K+ tr+ ε I +K− tr− ε I (4)

while a further differentiation renders the 4th-order secant stiffness tensor entering the
secant stress/strain law σ=E:ε,

E =
∂2ψ

∂ε ⊗ ∂ε

∣∣∣∣
Dt,Dc

= 2µ Pd +
(
3K+ H(tr ε) + 3K− H(−tr ε)

)
Pv (5)
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where Pv=I⊗I/3 and Pd=I
s−Pv are the volumetric and deviatoric 4th-order projection

operators, and I
s=I⊗ I is the 4th-order symmetric identity tensor, which is built from I

through the symmetrized dyadic product ⊗ ; H(x) is the unit-step (Heavyside) function
(H(x)=1 if x>0, H(x)=0 if x<0). The stiffness tensor E is endowed with both minor
and major symmetries and is positive definite for all values of the damage variables in
the range [0,1[ provided that the isotropic undamaged stiffness E0=2µ0 Pd+3K0 Pv is
positive definite, namely for µ0>0, K0>0. Notice that bulk material properties and elastic
stiffness (5) are not defined on the interface surface in strain space, tr ε=0 [27]. However,
stress continuity at the interface is assured in (4), since tr ε vanishes on the interface.
Due to the fact that the material response is assumed isotropic, tension and compression
subdomains of the elastic properties are separated in stress space by the dual interface
surface trσ=0. For this reason, the argument of the unit-step function in (5) can be
equivalently taken as trσ.

The damage activation and the evolution of the damage variables are governed by the
following loading/unloading conditions:

ft ≤ 0 Ḋt ≥ 0 ft Ḋt = 0 ; fc ≤ 0 Ḋc ≥ 0 fc Ḋc = 0 (6)

where ft and fc are two activation functions for states of prevailing tension or compression,
respectively, which are defined in stress space as

ft = J2 (σ)− at I
2
1 (σ) + bt rt (Dt) I1 (σ)− kt r

2
t (Dt) (1 − αDc)

fc = J2 (σ) + ac I
2
1 (σ) + bc rc (Dc) I1 (σ)− kc r

2
c (Dc)

(7)

In the above equations, J2(σ)=σd:σd/2 is the second invariant of the stress deviator
σd=Pd:σ, I1(σ)=trσ is the first invariant of the stress tensor, at, bt, kt, α, ac, bc, kc

are nonnegative material parameters (at≤1/3), and rt, rc are two hardening/softening
functions defined as follows

ri (Di) =




1 −
1 −

(
σe

σ0

)
i

D2
0i

(D0i
−Di)

2 for Di < D0i

[
1 −

(
Di −D0i

1−D0i

)ci
]3/4

for Di ≥ D0i

i = t, c (8)

where ci≥2 are the softening exponents, and σei
and σ0i

denote the absolute stress val-
ues at first elastic limit and at peak under uniaxial stress conditions, while D0i

are the
corresponding values of the damage variables at peak. Due to such physical meaning, the
material parameters are linked by the following relations:

(1/3− at) σ
2
0t

+ bt σ0t − kt = 0 , (1/3 + ac) σ
2
0c
− bc σ0c − kc = 0 (9)
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The two damage conditions originate a vertex-like structure (two corners in case of plane
stress) where they intersect in a region that lies, at the beginning of the damage process, on
the compression side of the stress space trσ<0. The two loading functions are conceived
in a way apt to reproduce the typical shape of the concrete failure domain under biaxial
stress states [9]. Functions (7) can be equivalently expressed in strain space in terms of
the strain invariants trε and Jε

2=e:e/2, by using the relations

J2 (σ) =
1

2
σd : σd = 4µ2 Jε

2 , I1 (σ) = trσ = 3K+ tr+ ε + 3K− tr− ε (10)

which arise from the isotropic stress/strain relation (4) involving decoupling of deviatoric,
σd=2µ e, and volumetric (10)b responses.

3 BIFURCATION ANALYSIS OF THE LOCAL MODEL

Differentiation with respect to time of the secant stress/strain law σ=E:ε yields

σ̇ = E : ε̇ + Mt Ḋt + Mc Ḋc (11)

where
Mt =

∂E

∂Dt

∣∣∣∣
ε

: ε = − (1 −Dc)
(
2µ0 e +K0 tr+ ε I

)
= −σd + tr +σ I/3

(1 −Dt)
(12)

Mc =
∂E

∂Dc

∣∣∣∣
ε

: ε = − (1 −Dt)
(
2µ0 e +K0 tr+ ε I

)
+K0 tr− ε I = − σ

(1 −Dc)
(13)

Assuming loading in the inelastic range for both dissipation mechanisms, from the con-
sistency conditions ḟt=0 and ḟc=0, Ḋt and Ḋc can be solved in terms of ε̇ and back-
substituted in (11) to obtain the tangent stiffness of the rate relation σ̇=E

T
:ε̇, namely:

E
T

= E+
Mt ⊗ (HccNt −HtcNc)

H
+

Mc ⊗ (−HctNt +HttNc)

H
(14)

where

Nt =
∂ft

∂ε

∣∣∣∣
Dt,Dc

= 2µσd + [bt rt(Dt)− 2at trσ] [3K+ H(trσ) + 3K− H(−trσ)] I (15)

Nc =
∂fc

∂ε

∣∣∣∣
Dt,Dc

= 2µσd + [bc rc(Dc) + 2ac trσ] [3K+ H(trσ) + 3K− H(−trσ)] I (16)

and Hij and H are the components and the determinant of the 2×2 nonsymmetric hard-
ening matrix H

H =

[
Htt Htc

Hct Hcc

]
= −




∂ft

∂Dt

∣∣∣∣
ε

∂ft

∂Dc

∣∣∣∣
ε

∂fc

∂Dt

∣∣∣∣
ε

∂fc

∂Dc

∣∣∣∣
ε


 ; H = detH (17)
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which is assumed to be positive definite. The tangent stiffness E
T
, eqn (14), is obtained

by two rank-one updates of the elastic stiffness E [24]. However, if only one damage
mechanism is active, either in tension or in compression, only a single rank-one update
modifies the damaged elastic stiffness:

E
T

= E+
Mi ⊗ Ni

Hii
, i = t or c (18)

Following [21, 22], the onset of strain localization in the material element is sought as
a bifurcation of the strain rate across a surface of local normal n and is signaled by the
first singularity of the 2nd-order acoustic tensor Q

T
:

Q
T

= n · E
T
· n , detQ

T
= 0 (19)

where, in turn, Q
T

is obtained from one or two rank-one updates of the (positive definite)
elastic acoustic tensor Q=n·E·n. Analytical solutions of the localization condition (19)b

have been provided for various material models in terms of critical hardening moduli and
critical localization directions, see e.g. [20, 12, 23, 24, 28].

The onset of bifurcation has been investigated for different biaxial stress paths in the
plane (σ1, σ2, σ3=0) comprising: radial stress paths at fixed σ1/σ2 ratios, and stress paths
sticked to the corner of the biaxial elastic domain at the intersection ft=0, fc=0. The lat-
ter hardening/softening paths are driven by damage activation of a single mechanism only,
in tension (Dc=0), or compression (Dt=0), or by simultaneous activation of both damage
mechanisms (Dt=Dc). The pure shear radial paths are slightly on the positive or negative
sides of the interface bisector line σ2=−σ1. In the strain localization analysis, the following
material parameters have been used: E0=31000 MPa, ν0=0.15; at=0.27, bt=3.64 MPa,
kt=12.2 MPa2, σet/σ0t=0.8, ct=5., D0t=0.1, α=1.; ac=0.003, bc=2.804 MPa, kc=233.4
MPa2, σec/σ0c=0.7, cc=5., D0c=0.3, which, from eqn (9), correspond to a concrete with
uniaxial peak stresses σ0t=3.18 MPa and σ0c=30.84 MPa, and, for the different peak
stress points of the biaxial failure domain: in equibiaxial tension (1/1) σ0tt=2.15 MPa, in
equibiaxial compression (−1/−1) σ0cc=35.36 MPa, in pure shear (−1/1) σ0s=3.49 MPa,
and at the corner σ01c=−29.28 MPa, σ02c=2.07 MPa. During hardening/softening the
corner always lies on the compression side trσ<0 of the stress plane.

Figures 1,2 report the localization index defined as the normalized determinant of the
acoustic tensor, detQ

T
/detQ, as a function of the inclination angle θ between the normal

n and the principal stress direction 1. The normal to the localization surface may lie In-
Plane (IP) of principal stress directions (1,2), or Out-Plane (OP), possibly belonging to
a cone of localization normals with axis 3 orthogonal to that plane. Such occurrence
depends on the relative positions of the max./min. and intermediate principal stresses
of the stress deviator. Critical localization directions and hardening parameters have
been determined by using a geometrical method [28], and solved for the critical damage
threshold values. The corresponding results are gathered in Table 1 below.
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Figure 1: Localization index for t: uniaxial tension, c: uniaxial compression and s: pure shear. Critical
damage Dcr and In-Plane (IP) inclination θcr of the localization normal.

Figure 2: Localization index for a stress state sticked to the corner of the biaxial stress domain; active
damage mechanisms in t: tension with Dc=0, c: compression with Dt=0, tc: tension and compression on
the radial damage path Dt=Dc. Critical damage Dcr and In-Plane (IP) or Out-Plane (OP) inclination
θcr of the localization normal.
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Figure 1 shows the localization index for the paths of uniaxial tension and compression,
and for pure shear on the tension side of the elastic domain. In these three cases local-
ization is detected in plane (for the uniaxial cases the normal actually belongs to a cone
with axis along principal stress direction 1). Due to nonassociativity, in uniaxial tension
and pure shear strain localization occurs in the hardening regime for a critical damage
value which is slightly below the peak stress damage D0t=0.1. In uniaxial compression
instead, localization occurs in the softening range, after the damage value D0c=0.3 has
been overcome. In uniaxial tension the localization normal is aligned with the tensile axis,
while it is inclined for the two other cases. In pure shear nonassociativity also induces a
sort of ‘acceleration effect’ [24] with detQ

T
/detQ overcoming 1 for certain directions.

Figure 2 depicts the normalized determinant of the acoustic tensor for stress states
sticked at the corner. When damage evolves only in tension localization is detected
out of plane and only very near the limit value Dt=1. The max. and intermediate
principal stresses of the stress deviator shift position only after Dt=0.9, so that out-
of-plane localization becomes possible. For certain directions the ‘acceleration effect’ is
also significantly present. The compression-active corner shows a profile with features
similar to those of the uniaxial compression case and localization in the softening range.
When both damage mechanisms are co-present the triggering effect of strain localization is
apparent: the corner activation and the corresponding double rank-one update destabilizes
the tangent stiffness and consequently the acoustic tensor. Localization occurs when both
mechanisms are in the softening range for damage values preceding the critical values for
singly-active damage mechanisms. The profile of the localization index is also flattened-
out with a reduced gap between valleys and peaks.

The other biaxial stress paths reported in Table 1 displayed similar features: in equibi-
axial tension and compression, localization happens in the softening range and occurs out
of plane on a cone with axis perpendicular to the stress plane. Pure shear on the com-
pression side shows only minor variations due to the slight differences in elastic moduli
that produce at the low damage values where localization takes place right before peak.

Stress and damage paths Critical damage Localization direction

equibiaxial tension Dtcr = 0.793 θcr=10.10◦ (OP)
uniaxial tension Dtcr = 0.098 θcr= 0.00◦ (IP)

pure shear in tension domain Dtcr = 0.094 θcr=63.41◦ (IP)
pure shear in compression domain Dtcr = 0.094 θcr=63.89◦ (IP)

corner with t. path Dc=0 Dtcr = 0.990 θcr=75.23◦ (OP)
corner with c. path Dt=0 Dccr= 0.552 θcr=35.95◦ (IP)

corner with t./c. path Dt=Dc D cr = 0.425 θcr=14.68◦ (IP)
uniaxial compression Dccr= 0.571 θcr=34.17◦ (IP)

equibiaxial compression Dccr= 0.753 θcr=40.51◦ (OP)

Table 1: Results of strain localization analysis for different biaxial stress paths.
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4 ENHANCED MODELS

4.1 Model with nonlocal integral enhancement

As proposed in [19], a nonlocal model can be obtained by introducing in the loading
functions (7), expressed in strain space through eqns (10), the following nonlocal strain
measures at a point x of the solid

〈Jε
2 (x)〉 =

∫
V

W (x − s) Jε
2 (s) dV (20)

〈
tr+ ε (x)

〉
=

∫
V

W (x − s) tr+ ε (s) dV ,
〈
tr− ε (x)

〉
=

∫
V

W (x − s) tr− ε (s) dV (21)

where dV is the volume element at point s and W (x − s) is the weighting function, here
assumed as the normalized Gauss function

W (x − s) =

exp

(
−‖x − s‖2

2 l2

)
∫

V

exp

(
−‖x − s‖2

2 l2

)
dV

(22)

Note that the averages (20)-(21) are extended to the whole volume V , but due to the
shape of the weighting function (22), the material parameter l, with dimension of a length,
defines in practice the region of the body surrounding point x which really influences the
behavior at that point.

To take into account the different behaviors of concrete-like materials concerning lo-
calized phenomena in tension and compression, two different length parameters, lt and lc,
can be used in (20)-(22) to perform the averages of the strain invariants to be introduced
in the loading functions. Denoting by 〈◦〉t and 〈◦〉c the averages of quantity ◦ performed
with lt and lc, respectively, the resulting nonlocal yield functions Ft and Fc are obtained
by substituting to the local strain invariants their average values:

Ft = 4µ2 〈Jε
2〉t − 9at

(
K+

〈
tr+ ε

〉
t
+K−

〈
tr− ε

〉
t

)2
+ 3bt rt (Dt)

(
K+

〈
tr+ ε

〉
t
+K−

〈
tr− ε

〉
t

)− kt r
2
t (Dt) (1 − αDc)

(23)
Fc = 4µ2 〈Jε

2〉c + 9ac

(
K+

〈
tr+ ε

〉
c
+K−

〈
tr− ε

〉
c

)2
+ 3bc rc (Dc)

(
K+

〈
tr+ ε

〉
c
+K−

〈
tr− ε

〉
c

)− kc r
2
c (Dc)

As shown in [29, 19], strain localization into a band of zero width, which occurs in
the local medium when condition (19)b is fulfilled, cannot occur in the nonlocal medium.
In fact in this latter medium, the bifurcation condition is given by the singularity of a
tensor (similar to the acoustic tensor of the local medium, eqn (19)a) which depends on
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the wavelength through the Fourier transform of the weighting function. This tensor
coincides with the elastic acoustic tensor when the wavelength tends to zero and hence
is nonsingular. Therefore the ill-posedness of the boundary value problem is avoided by
this nonlocal enhancement.

4.2 Model with gradient-dependent enhancement

An alternative nonlocal model can be obtained by introducing the spatial gradients
of the damage variables in the stress-based loading functions ft and fc, eqn (7). If only
second-order gradients are included one has:

Ft = ft(σ, Dt, Dc) + g2
t Gt (Dt) ∇2Dt

Fc = fc(σ, Dc) + g2
c Gc (Dc) ∇2Dc

(24)

where gt and gc are the diffusion coefficients, in tension and compression, with the dimen-
sions of a force per unit length, and Gt (Dt), Gc (Dc) are the nondimensional diffusion
functions. The functional dependence of Gt, Gc on damage is not specified here and will
be discussed in Section 5.2. At this stage we only assume that these functions are positive
for any value of the damage variables. Standard arguments (see e.g. [30]), summarized be-
low, allow to prove that with this definitions the boundary value problem remains elliptic
also in the softening regime.

Consider the quasi-static rate problem, assuming full loading conditions (Ḟt=0 and
Ḟc=0):

ε̇ =
1

2

(∇u̇+∇T u̇
)
, div σ̇ = 0 (25)

Ḟt =
∂ft

∂σ
: σ̇ + [bt I1 (σ) − 2kt rt (Dt) (1 − αDc)] r

′
t(Dt) Ḋt

+ g2
t G

′
t(Dt)∇2Dt Ḋt + g2

t Gt (Dt)∇2Ḋt + αkt r
2
t (Dt) Ḋc = 0

(26)

Ḟc =
∂fc

∂σ
: σ̇ + [bc I1 (σ)− 2kc rc (Dc)] r

′
c(Dc) Ḋc

+ g2
c G

′
c(Dc)∇2Dc Ḋc + g2

c Gc (Dc)∇2Ḋc = 0
(27)

where r′i(Di), G
′
i(Di), are the first derivatives of functions ri(Di), Gi(Di), i=t, c. The

stress and strain increments can be eliminated from eqns (11) and (25). The symbol of
the principal part of the system of eqns (25)b,(26),(27) in the unknown rates u̇, Ḋt, Ḋc is
the array S (ñ)

S (ñ) =


 ñ · E · ñ 0 0

0 g2
tGt (Dt) ñ · ñ 0

0 0 g2
cGc (Dc) ñ · ñ


 (28)

The rate problem looses ellipticity whenever detS (ñ)=0 for some direction ñ�=0, i.e.
when

det (ñ · E · ñ)
[
g2

t Gt (Dt) ñ · ñ] [g2
c Gc (Dc) ñ · ñ] = 0 (29)

10



Claudia Comi and Egidio Rizzi

This condition may be alternatively stated by seeking harmonic solutions of the system
(25)b,(26),(27) in the form of the rates u̇, Ḋt, Ḋc ∝ exp (i ñ·x), with ñ=q n, q being the
wave number and n a unit direction. Since the damaged elastic acoustic tensor n·E·n is
positive definite, from (29) one can conclude that the problem remains elliptic for any
g2

t Gt (Dt)>0 and g2
c Gc (Dc)>0.

5 ONE-DIMENSIONAL WAVE PROPAGATION ANALYSIS

Differences and similarities of the proposed models can be appreciated in the dynamic
context by considering a one-dimensional wave propagation analysis: focusing only on the
tensile behavior (the subindex t is dropped in the following), the model description can
be simplified to:

σ = E0 (1 −D) ε , F = Ft ≤ 0 , Ḋ ≥ 0 , FḊ = 0 (30)

where E0 is the undamaged Young’s modulus. Let us consider the one-dimensional equa-
tions of motion linearized around a strained homogeneous state (ε, D):

σ̇,x = ρ
...
u , σ̇ = E0

[
(1 −D) u̇,x − Ḋ ε

]
, Ḟ = 0 (31)

where ρ is the mass density of the bar. Starting from this homogeneous state, consider
an harmonic wave of frequency ω and wave number q propagating through an enhanced
damage bar with velocity and damage fields of the form:

u̇ = v0 exp (i (qx− ωt)) , Ḋ = d0 exp (i (qx− ωt)) (32)

5.1 Analysis with the nonlocal model

For the integral model of Section 4.1, specialized to the one-dimensional case, the
consistency condition (31)c reads:

Ḟ = (1−D)
A(ε,D)

ε

∫
L

W (x− s) ε̇ (s) ds− [A(ε,D) + B(ε,D) r′(D)] Ḋ = 0 (33)

where the functions A (ε,D), B (ε,D) are defined as

A (ε,D) = 2 (1/3− a) (1 −D)E2
0 ε

2 + E0 ε b r (D) (34)

B (ε,D) = 2 k r (D)− (1 −D)E0 ε b (35)

Direct substitution of (32) into the linearized equations of motion (31), with Ḟ given by
(33), yields a dependency of the phase velocity on the wave number q. The phase velocity
for the nonlocal integral model is:

cf =
ω

q
= ce

√
A (ε,D)

[
1 − W̄ (q)

]
+B (ε,D) r′(D)

A (ε,D) +B (ε,D) r′(D)
(36)

11
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where ce is the elastic propagation velocity in the damaged bar

ce =

√
(1 −D)E0

ρ
(37)

and W̄ (q) is the Fourier transform of the Gauss function W (x−s), eqn (22), rigorously
only under the hypothesis that L→∞:

W̄ (q) =

∫ +∞

−∞
W (ξ) exp (−i q ξ) dξ = exp

(
−q

2l2

2

)
(38)

The phase velocity (36) is real if the wave number is such that the numerator of the
term under square root in (36) is positive (which implies a positive denominator term
A+B r′). This is always the case in the hardening regime (r′(D)>0), i.e. for D<D0. On
the contrary, for D>D0, only waves with wavelength λ≤λcr do propagate, where

λcr =
2π

qcr
=
√

2πl

[
− ln

(
1 +

B (ε,D)

A (ε,D)
r′(D)

)]−0.5

=
√

2πl

[
− ln

(
1 +

(1 −D)

r(D)
r′(D)

)]−0.5

(39)

and in the last equality the condition F=0 has been used. Since, due to the material
dissipative behavior, high frequencies are damped, one obtains a stationary harmonic
localization wave of wavelength λcr; this length represents the internal localization length.
Note that this internal length turns out to be a decreasing function of the damage D. For
D=D0 the critical wavelength is infinite, while as D→1, the internal length tends to a
finite nonzero value which can be computed from eqn (39). For example, assuming D0=0,
in (8)2 one has

lim
D→1

λcr =
√

2πl [− ln (0.25)]−0.5 = 3.773 l (40)

The evolution of the internal length λcr with damageD for varying material parameters
l, c and D0 is shown in Figs 3a,b,c, respectively. The thicker black curve in the three
figures corresponds to the same set of material parameters. From Fig. 3a it can be
observed that the material length l, according to eqn (39), equally affects the internal
length for all damage values. On the contrary, a change of the exponent c of the softening
branch does not affect the internal length at the limit D→1, see Fig. 3b. The curves for
varying D0 in Fig. 3c have vertical asymptotes at D=D0; in fact, in the one-dimensional
case localization takes place at the peak of the stress-strain curve (i.e. for D=D0) and
only after this value the characteristic length needs to be considered.
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Figure 3: Evolution of the characteristic length λcr with damage D for: (a) varying length parameter l;
(b) varying softening exponent c; (c) varying damage at peak D0.

13



Claudia Comi and Egidio Rizzi

5.2 Analysis with the gradient-dependent model

Adopting a gradient-dependent formulation, from (24)1 the consistency condition reads

Ḟ = (1 −D)
A(ε,D)

ε
ε̇− [A(ε,D) +B(ε,D) r′(D)] Ḋ + g2G(D)∇2Ḋ = 0 (41)

where functions A(ε,D), B(ε,D) are defined by eqns (34)-(35) and term g2 ∇2DG′(D) Ḋ
has been dropped due to the assumed homogeneity of the starting state.

Substituting the velocity fields (32) into the linearized equations of motion (31), with
Ḟ now given by (41), yields again a dispersive relation between phase velocity cf and
wave number q. The phase velocity for the gradient-dependent model is:

cf =
ω

q
= ce

√
B (ε,D) r′(D) + g2G (D) q2

A (ε,D) +B (ε,D) r′(D) + g2G (D) q2 (42)

where ce is defined by eqn (37). The phase velocity (42) is real in the hardening regime
and in the softening regime (D>D0) if the wave number is such that the numerator is
positive; this means that only waves with wavelength λ≤λcr do propagate, where

λcr =
2π

qcr
= 2π

√
g2G (D)

−B (ε,D) r′(D)
(43)

Using the condition F=0, and assuming for simplicity a=1/3, one obtains

λcr =
2π

qcr
= 2π

g√
k

√
G (D)

−r (D) r′(D)
(44)

Comparing this internal length with the one obtained for the integral model one may
observe that the coefficient g/

√
k, with dimension of a length, plays the same role of

l/
√

2 in eqn (39). In the gradient dependent model the internal length is also a function
of damage and the evolution with damage depends on the chosen function G (D). Four
alternatives have been considered and the results in terms of the critical length evolution
are shown in Fig. 4:

model A : G (D) = 1 (45)

model B : G (D) = r(D) (46)

model C : G (D) =

(
1 −

(
D −D0

1 −D0

)c)0.5

for D > D0 (47)

model D : G (D) = −r(D) r′(D) (48)
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Figure 4: Evolution of the characteristic length λcr with damage D for the different enhanced models
(D0=0).

Model A, which corresponds to a constant coefficient of the gradient term and repre-
sents the simplest choice, leads to a critical wave length which tends to infinity both for
D=D0 and D→1 (blue bold curve in Fig. 4). This unbounded increase of the internal
length as damage approaches these critical values is clearly unphysical.

On the contrary, with model B the internal length tends to zero as D tends to one
(green curve of Fig. 4). This allows to model the transition from a localization zone to a
macrocrack; however numerical problems may be encountered for high values of damage
and adaptive mesh refinement or transition from a continuous approach to a discontinuous
one would be required.

With model C one obtains a behavior which is very similar to the one observed for
the nonlocal model: compare the light blue curve with the black dashed curve of Fig. 4
obtained by the gradient model and the integral model, respectively, with parameters
g/

√
k=l/

√
2.

Finally, a constant internal length is obtained with the last choice (model D). Other dif-
ferent curves could of course be obtained for different choices of G (D), the only constraint
on this function being its positiveness for any 0≤D<1.

6 NUMERICAL TEST WITH THE NONLOCAL DAMAGE MODEL

Numerical simulations require time and space discretizations. In this work a backward
difference integration scheme of the nonlocal constitutive model of Section 4.1 is adopted
and space discretization is performed following a standard displacement-based approach.
Due to the particular form of nonlocality adopted, in which only the strain invariants are

15



Claudia Comi and Egidio Rizzi

0 20 40 60 80 100
x [mm]

0.0

0.2

0.4

0.6

0.8

1.0
D

0.000 0.004 0.008 0.012 0.016

u [mm]

0

1

2

3

24el.

40el.

80el.

120el.

u
R

/A
 [M

P
a]

(a)

(b)                                                                                   (c)

Figure 5: One-dimensional bar in tension: (a) geometry and FE discretization; (b) built-in end reaction
stress versus imposed displacement for varying FE meshes; (c) damage distribution along the bar at the
loading stages marked by the spots in (b).

nonlocally defined, while the damage variables remain locally defined, the only difference
in the numerical solution of the finite step problem with respect to the usual iterative
scheme used for the local inelastic models is the addition of an averaging phase between
the predictor and the corrector phases. The input quantities of the corrector phase become
the nonlocal strain invariants, but the evaluation of the updated damage values can be
performed locally in the usual way.

The problem of the quasi-static response of a bar subject to the imposed displacement
u of Fig. 5 is considered. The bar is discretized with four meshes of 24, 40, 80 and 160
three-nodes CST Finite Elements (in Fig. 5a the 40-elements mesh is shown); to trigger
strain localization, the first shaded elements near the built-in end are slightly weaker with
a reduced material parameter kt.

Figure 5b shows the computed built-in end reaction divided by the nominal specimen
section as a function of the imposed displacement as obtained for the four different FE
discretizations. The different curves rapidly converge to a mesh independent solution,
upon mesh refinement. The vertical after-peak drop of the reaction corresponds to the
rapid damage growth which approaches the limit value 1 in the localized zone near the
built-in end. The damage growth is rather unstable under displacement control for this
uniaxial case.

The damage profiles at a stage right before the vertical drop of the reaction (red spot
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in Fig. 5b) and at a state on the tail that develops after this drop (blue spot in Fig. 5b)
are plotted in Fig. 5c for the three meshes with higher refinement; again, as the mesh is
refined, convergence to a mesh-independent profile is observed.

0 20 40 60 80 100
x [mm]

0.0

0.2

0.4

0.6

0.8

1.0
D

0 20 40 60 80 100
x [mm]

0.0

0.2

0.4

0.6

0.8

1.0
D

0.0 0.2 0.4 0.6 0.8 1.0
D

0

100

200

300

400

Do=0.05
c=5., l=10mm

c .=10 6
λ c

r
[m

m
]

(a)

(b)                                                                    (c)

Figure 6: One-dimensional bar in tension: (a) characteristic length λcr vs damage D; (b) damage profiles
for c=5; (c) damage profiles for c=10.6.

The influence of parameter c on the localization process, already discussed analytically
(cfr Fig. 3b) is confirmed by the numerical analyses. Figures 6b and 6c show the evolutions
of the damage profiles during the analyses for c=5 and c=10.6 , respectively, while Fig. 6a
displays the analytically computed critical length vs damage curves for the same values
of c.

To interpret the results note first that the numerical analyses have been carried out
on a built-in-end bar in which localization was triggered at this end. This scheme can be
thought of as half of a bar of length L∗=2L=200 mm, symmetrically loaded and weakened
at the center. From Fig. 6a one can see that the critical wave length λcr, representing
the width of the localization zone, is bigger then twice the length L of the bar for low
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values of damage, therefore at a first stage damage grows in the whole bar; namely, in
the case c=5 (pink line) λcr≥200 mm for D≤0.42, while in the case c=10.6 (green line)
λcr≥200 mm for D≤0.7. This is confirmed by the numerical analyses: localization within
the bar, i.e. unloading in some elements, occurs when damage reaches the values D�0.42
and D�0.7, respectively (situations represented by the green profiles in Figs 6b and 6c).
Then the localization zones shrink, to reach the predicted asymptotic value around 50
mm as damage tends to one; accordingly, the final profiles of damage in the built-in-end
bar exhibit a localization zone of about 25 mm.

7 CONCLUSIONS

Some aspects of the bifurcation behavior of local and nonlocal damageable materials
with different behaviors in tension and compression have been studied. In particular it
has been shown that:

- Strain localization of the local model may happen in the hardening regime due to
the nonassociativity of the material formulation. The onset of strain localization
has been detected for different biaxial stress states in terms of critical localization
directions and critical values of the damage variables at the localization onset. Lo-
calization may occur with in-plane or out-of-plane normal and is triggered for stress
states sticked to the corners formed at the intersection of the two loading functions
in the biaxial stress plane.

- The introduction of nonlocality in the loading functions has a regularizing effect in
both enhanced versions, since it prevents the ill-posedness of the initial-boundary
value problem and the consequent mesh-dependence of numerical results. The char-
acteristic lengths implicitly introduced by the nonlocal models have been quantified
analytically by means of a one-dimensional wave propagation analysis.

- Such internal lengths do depend on the values reached by the damage variables. For
the assumed integral model, the characteristic length decreases as damage increases
and tends to a finite, nonzero value, when damage tends to zero. For the gradient
dependent model, different functional dependencies of the characteristic length with
damage can be obtained by properly defining the diffusion functions which multiply
the second-order gradient terms in the loading functions. These results have been
confirmed by FE computations of the quasi-static response of a tensile bar by using
the nonlocal damage model.
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