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ABSTRACT 

This note deals with the optimal tuning of the free parameters of the so-called Tuned Mass Dampers 
(TMDs), devices which are conceived to be attached to structural systems in order to reduce 
vibrations induced by external actions. The main point of view and application perspective here is that 
of civil and seismic engineering, though the basic TMD concept arises in mechanical engineering [1]. 
A TMD is a device in which an additional auxiliary mass is attached to the primary mass of the 
structural element by a spring or a spring/dashpot element to counterbalance the vibrations of the 
primary system. The main tuning parameters of the device are the mass, frequency and damping 
coefficient ratios between the parameters of the auxiliary mass and those of the primary system. The 
paper reports the initial results of an on-going research at the University of Bergamo [2]. 

First, the basic concepts of classical Den Hartog’s tuning [1] are briefly reviewed and analysed 
systematically in the general context of damping of the main system and of the TMD device, both for 
harmonic excitation at the principal mass and at the support. Analytical results are summarised in 
table form, whereby the different explicit expressions of the normalised amplitude x1 /xst of the 
primary mass oscillation are given as a function of the various parameters of the system. Some 2D 
and 3D maps are also provided to show the role of the tuning parameters.  

Optimal tuning is then investigated numerically on a SDOF + TMD system by a minimax procedure. 
Comparisons to the fundamental tuning by Den Hartog are provided and the effect of structural 
damping is explored. Results are also compared to classical contributions from the literature [3,4]. 
Useful abacuses are also compiled in the spirit of [4], for easy access to the best tuning.   

The dynamical response of a 10-storey shear-type building with a TMD added on top subjected to El 
Centro input ground motion is then evaluated numerically. Results display the considerable reduction 
of the top floor displacement after the insertion of the TMD. Plots are presented together with a 
resuming table showing the percentage of vibration reduction as a function of the damping involved. 

This contribution attempts a preliminary study on the usefulness of TMD devices in the field of 
seismic engineering. Further results on tuning at seismic input should help in clearing if TMDs could 
work effectively for seismic isolation. Detailed practical applications are also left for future work. 
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Abstract. This note deals with the optimal tuning of the free parameters of the so-called Tuned Mass 
Dampers (TMDs), devices which are conceived to be attached to structural systems in order to reduce 
the vibrations induced by external actions. First, the basic concepts of classical Den Hartog’s tuning 
are briefly reviewed and analysed systematically in the general context of damping of the main system 
and of the TMD device, both for harmonic excitation at the principal mass or at the support. Analyti-
cal results are summarised in table form, whereby the different explicit expressions of the normalised 
amplitude x1 /xst of the primary mass oscillation are given as a function of the various system parame-
ters. Some 2D and 3D maps are also provided to show the role played by the tuning parameters. Op-
timal tuning is then investigated numerically on a SDOF + TMD system by a minimax procedure. 
Comparisons to the fundamental tuning by Den Hartog are provided and the effect of structural damp-
ing is explored. Useful abacuses are also compiled, for easier access to the best tuning. The dynamical 
response of a 10-storey shear-type building with a TMD added on top, subjected to El Centro input 
ground motion is then evaluated numerically. Results show and quantify the reduction of the top-floor 
displacement after the insertion of the TMD. 
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1 INTRODUCTION
This paper considers the task of finding the best tuning of the free parameters of the Tuned 
Mass Dampers (TMDs). These devices are conceived to be attached to structural elements or 
systems in view of containing the structural vibrations that may be induced by the presence of 
dynamical external actions. The main point of view and application perspective here is that of 
civil and seismic engineering, though the basic TMD concept seems to arise in naval and me-
chanical engineering [1]. A TMD is a device in which an additional, auxiliary mass is at-
tached to the primary mass of a structural element by a spring or a spring/dashpot element, to 
counterbalance the vibrations of the primary system. The main tuning parameters of the de-
vice are the mass, frequency and damping coefficient ratios between the parameters of the 
auxiliary mass and those of the primary system. The paper reports the preliminary results of 
an on-going research investigation at the University of Bergamo [2]. 

According to Den Hartog [1], the original concept of the TMD absorber was introduced by 
Frahm in 1909, with the goal of reducing the rolling vibrations in ships. Being conceived 
without any inherent damping, its effectiveness holds true under resonance conditions, when 
the frequency of the external action approaches the natural frequency of the system, within the 
so-called “operating range” of the TMD device. On the contrary, the absorber does not work 
properly when the forcing frequency starts to deviate from the natural frequency of the struc-
ture and reaches the resonant frequencies of the system with added TMD, leading theoreti-
cally to unbounded oscillations. Due to these limitations, Ormondroyd and Den Hartog in 
1928 have shown that, by introducing some damping in the TMD device, the response of the 
Frahm’s absorber improves at variable frequency of the external action. Later, the concept 
was further analysed and presented systematically and codified in Den Hartog’s classical text 
on Mechanical Vibrations [1]. There, explicit formulas were derived for the optimal tuning in 
the presence of harmonic excitation on the primary system, which was assumed undamped. 
Implicitly, it was thought that inherent damping of the system would just provide additional 
help in the effectiveness of the device. Further studies have then inspected the role of the in-
herent damping of the structural system, which no longer allows closed-form derivations as in 
Den Hartog’s case and needs either numerical or approximate analytical approaches to locate 
the best tuning (see e.g. Rana and Soong [3] and Ghosh and Basu [4], respectively). The pre-
sent paper attempts a contribution along these lines. 

A number of useful works in the literature have inquired the use of TMD devices in differ-
ent structural contexts, including that of civil and seismic engineering, where the dynamical 
external actions easily go beyond the application of a single harmonic excitation [5-8]. A brief 
review of previous work in the field is presented e.g. by Sadek et al. [8], which show that dif-
ferent conclusions on the effectiveness of the devices in controlling seismic vibrations have 
been obtained. Some of them appear rather skeptical. For example, Sladek and Klingner [5], 
by adopting Den Hartog’s tuning concept on a TMD located on top of a 25-storey building 
subjected to El Centro ground motion, have concluded that the TMD turned-out not that use-
ful in taming the response of the structure. Different studies on the effectiveness of TMD de-
vices in seismic applications have also been conducted by Villaverde and coworkers, e.g. 
Villaverde [6] and Villaverde and Koyama [7]. They claim that the optimal TMD parameters 
are obtained when the damping factors of the first two complex modes of vibration of the 
combined system structure + TMD are nearly equal to the average of the separate damping 
ratios of the structure and of the TMD. It is observed that the use of a TMD in conditions of 
resonance with the main structure may introduce additional damping and thus reduce the 
seismic response of a building. The method proved successful in various 2D and 3D numeri-
cal and experimental analyses, under different ground movements. A relevant contribution on 



Egidio Rizzi, Daniele Brescianini, Matteo Scotti 

3

the applicability of passive TMD devices in seismic engineering is that of Sadek et al. [8]. 
These authors present an improvement of the analysis of Villaverde [6] by considering both 
SDOF and MDOF structural systems and present useful plots of the tuning parameters as a 
function of mass ratio. They conclude that the best tuning is obtained when the first two 
modes of the structure with TMD will have equal damping ratios, which are greater of the av-
erage of inherent and TMD damping ratios. With this, it is claimed that the amplitude in dis-
placement and acceleration responses may reduce significantly, even up to 50%. Thus, Sadek 
et al. [8] seem rather in favour of the use of TMD devices for taming the seismic response. 

In sum, it appears that the literature reveals quite a controversial point of view on the real 
effectiveness of passive TMD devices in reducing the seismic response of structural systems, 
whereas this seems to hold true for harmonic excitations and also for other external actions, 
like for instance wind loadings. This obviously motivates further investigations on the subject. 
In this direction, the present paper also attempts a numerical simulation of the seismic re-
sponse of a prototype 10-storey building, which seems to show the usefulness of the device in 
the present case. The difficult task is obviously that of getting the most appropriate tuning for 
the selected structure and for the type of seismic input to be expected. This also calls for the 
concept of active or semi-active TMDs, which are able to change the tuning parameters de-
pending on these characteristics, a concept that is also much investigated in the recent litera-
ture (not in this context). 

The present paper is organised as follows. First, in Section 2 the basic concepts of classical 
Den Hartog’s tuning [1] are briefly reviewed and analysed systematically in the more general 
context of damping of the main system and of the TMD device, both for harmonic excitation 
at the principal mass or at the support. Analytical results are presented in table form, whereby 
the different explicit expressions of the normalised amplitude x1 /xst of the primary mass oscil-
lation are given as a function of the system’s parameters. Some 2D and 3D maps are also pro-
vided to show the role of the tuning parameters. Then, in Section 3 the optimal tuning is 
investigated numerically on a SDOF + TMD system by the implementation of a minimax pro-
cedure. Comparisons to the fundamental tuning by Den Hartog are provided and the effect of 
structural damping is explored. Results are presented in plot form where the optimal parame-
ters are depicted as a function of mass ratio, as provided by classical contributions in the lit-
erature [5,8]. Useful abacuses are also compiled in the spirit of [3,4,8], for easy access to the 
best tuning. Finally, in Section 4 the dynamical response of a 10-storey shear-type building 
with a TMD added on top, subjected to El Centro input ground motion is evaluated numeri-
cally. Results display and quantify the reduction of the top-floor displacement after the inser-
tion of the TMD. Plots are presented together with a resuming table showing the percentage 
of vibration reduction in terms of top-floor displacement, velocity and acceleration, as a func-
tion of structural damping. At end, closing Section 5 outlines some first conclusions on the 
preliminary results obtained here. 

2 DEN HARTOG’S TMD CONCEPT AND RELEVANT TUNING 
The TMD concept may be illustrated by an elastic SDOF system with primary stiffness and 
mass K, M, with an attached TMD of secondary stiffness and mass k, m (see Scheme 1 in fol-
lowing Table 1). The secondary mass is usually interpreted as a fraction of the primary mass, 
through the mass ratio � = m / M. In the classical analysis by Den Hartog [1], an harmonic 
force P0 sin �t with angular frequency � is let to act on the primary mass. The input fre-
quency � is confronted to the natural angular frequency of the primary system �n =� (K / M).
Also, in view of reaching the best tuning, the natural angular frequency of the absorber 
�a =� (k / m) is confronted as well to the previous two. Thus, the two frequency ratios 
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f = �a / �n and g = � / �n are naturally defined to interpret the functioning of the system. 
Typically, the idea is to damp the vibrations of the primary mass when the system is near the 
condition of resonance � = �n, thus for g near 1. The value f = 1 is also often assumed, 
though not necessarily leading to the best tuning. The insertion of the TMD induces two reso-
nant frequencies in the obtained undamped 2-DOF system, which move apart from the singu-
lar original resonant frequency and make a fork of operating range for the frequency ratios g
around the primary resonance condition (Fig. 1). Indeed, by writing the equations of motions 
of the 2-DOF system and looking for the particular harmonic solution, one gets the displace-
ment amplitude x1 normalised to the static displacement of the primary mass xst = P0 / K (Ta-
ble 1), which become unbounded for values of g that set to zero the denominator of x1 / xst.

Figure 1: Amplification factor of the undamped absolute displacements 1 2x ,x as a function of g ( f 1� , 0.1� � ).

External damping can then be introduced into the TMD, which, according to [6-8] is really 
crucial in increasing the overall damping of the system. This corresponds to the insertion of a 
dash-pot element between the two masses (Scheme 2 in Table 1), with damping coefficient c
and damping factor that is either related to critical damping c c = 2 m �n or c� c= 2 m �a, both 
often used in the literature (notice that c� c = f c c). This leads to the classical fixed-point theory 
of nodes P and Q (Fig. 2), which are common to all displacement curves regardless of the 
value of the damping ratio. According to Den Hartog [1], the best tuning of the TMD is 
reached, in closed-form, for fopt= 1 / (1+�), when the nodes P and Q get at the same quote. 
Correspondingly, the best tuning of the damping coefficient c is that which locates the two 
maxima in the displacement response curve at almost the same height and around nodes P and 
Q themselves. Precisely, Den Hartog proposes the average (c / c� c)opt = � (3/8 ·� / (1+�)) of 
the values that lead separately to the stationary condition reached either in P or in Q. The 
common height of the nodes may also be estimated at best tuning as (x1 / xst)opt = � (1 + 2 / ��.

As a final systematic development on this line of thought, the damping ratio C/Cc of the 
primary system, always present in real structures, can be introduced and, following the pro-
posal by Rana and Soong [3], analysed as well for harmonic excitation at the support (accord-
ing to a flag �	that is equal to 0 for action on the primary mass and to 1 for excitation at the 
support). This compiles the additional cases reported in Table 1. A map of the amplification 



Egidio Rizzi, Daniele Brescianini, Matteo Scotti 

5

factor of the displacement of the primary mass as a function of frequency ratios f and g is also 
reported, at no structural damping, in Fig. 3, as a representative example of the system’s be-
haviour. When inherent damping C/Cc is introduced, the closed-form solution for the tuning 
of f is no longer available. Ghosh and Basu [4] have developed an approximate closed-form 
derivation of fopt, which holds on the hypothesis that points P and Q are still almost fixed at 
variable damping. Another useful approach is that of numerical optimization procedures, as 
put forward in [3], which is further developed and discussed in the next section. 

Figure 2: Amplification factor of the absolute displacement of the primary mass 1x as a function of forcing fre-
quency ratio g , for various damping ratios cc c  ( f 1� , 0.1� � ). 

Figure 3: Amplification factor 1 stx / x  for excitation at the support, 1� �  ( 0.1� � , cc c 0.1� , cC C 0� ).
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Table 1: Resuming frame with the different cases of SDOF + TMD system (with definition c ac 2 m �� 
 
� ).
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3 OPTIMAL TUNING OF THE TMD PARAMETERS 
A tuning procedure is devised within the MATLAB environment, by using a minimax optimi-
zation procedure. The algorithm is based on the existing function “fminimax” and solves the 
task of minimizing the worst case, in terms of maximum values, of a set of multi-valued func-
tions, depending on specific variables (free parameters), possibly subjected to constraint con-
ditions. Within the present concerns, the problem might be basically stated as follows: 

(1)

where �x� is the vector of the tuning variables, Fi�x� are the objective functions and vectors 
�lb� and �ub� prescribe the lower and upper bounds of the system parameters. 

In the present case, the tuning variables of the TMD device are mass ratio � = m / M, fre-
quency ratio f = �a / �n and damping ratio c / c� c. Within these, the choice was made here to 
optimize only f and c / c� c at given �, with 0 � � � 1, since parameter � is most often assumed 
a priori based on the structural characteristics. The objective function is taken as the dis-
placement amplitude of the primary mass. 

According to Den Hartog’s tuning concept (Section 2), the optimal parameters at no struc-
tural damping, C/Cc = 0, are found by letting fixed nodes P and Q (Fig. 2) at the same quote, 
leading to fopt= 1/(1+�) and (x1 / xst)opt= � (1 + 2/��. Furthermore, (c / c� c)opt= � (3/8 ·� /(1+�))
is taken as the average of the damping ratios that lead to local peak in P or in Q. However, it 
appears that there is no explicit analytical proof of this tuning procedure. Also, it does not ap-
ply as-is to real cases where the structural damping C/Cc is not zero. Thus, a comprehensive 
estimate of the best tuning parameters has been carried-out by the minimax procedure, in or-
der to compare these results to the classical outcomes by Den Hartog’s tuning. This is done 
first for the case C/Cc = 0 and further for different damping ratios of the primary system. Also, 
the effect of flag �	 ruling the role of harmonic excitation at the primary system (� = 0) or at 
the support (� = 1) is investigated as well. Abacuses are generated to gather in synoptic form 
the obtained optimal values fopt and (c / c� c)opt, together with the corresponding maximum val-
ues of the primary mass displacement (x1 / xst)peak, for various values of mass ratios �	and
structural damping ratios C/Cc.

3.1 Optimal tuning for harmonic excitation at the primary mass (� = 0 )

Figs. 4�6 represent the achieved results in terms of the optimal parameters fopt, (c / c� c)opt and 
resulting maximum displacement ratio (x1 / xst)peak, at no structural damping (C/Cc = 0), as a 
function of prescribed mass ratio	�. From the exam of Fig. 4 it appears that the minimax esti-
mate of fopt is practically coincident with the outcome of Den Hartog’s tuning. One could say 
that this does provide a sort of numerical proof of the analytical formula conjectured by 
Den Hartog. As expected, slightly different results are instead obtained for (c / c� c)opt. Indeed, 
Fig. 5 shows that for high values of � larger than about 25%-30%, some differences between 
the two estimates start to be appreciated. On the other hand, such difference seems to have 
mostly academic, rather than practical implications. Correspondingly, looking at the plots in 
Fig. 6, the least value of (x1 / xst)peak is obtained by the minimax procedure but differs very 
slightly from Den Hartog’s simple estimate based on the common quote of nodes P and Q.

� � � �
� �� � � � � � � �( )

i
i b bx F

min max F x , with l x u� �
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Figure 4: optf as a function of �  by a minimax procedure and comparison to Den Hartog’s tuning 
( cC C 0� , 0� � ).

Figure 5: � �c opt
c c� as a function of �  by a minimax procedure and comparison to Den Hartog’s tuning 

( cC C 0� , 0� � ).
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Figure 6: � �1 st peak
x x as a function of �  by a minimax procedure and comparison to Den Hartog’s tuning 

( cC C 0� , 0� � ).

Now, further graphs corresponding to the previous ones are obtained as well in the case of 
structural damping, for a series of inherent damping ratios C/Cc varying between 2% and 10%,
at step 2% (Figs. 7�9).

Figure 7: optf as a function of �  by a minimax procedure, for different values of cC C ( 0� � ).
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Figure 8: � �c opt
c c� as a function of �  by a minimax procedure, for different values of cC C ( 0� � ).

Figure 9: � �1 st peak
x x as a function of �  by a minimax procedure, for different values of cC C ( 0� � ).

From the analysis of Figs. 7 and 9 it appears that for increasing C/Cc, at given �, a decrease 
of fopt and (x1 / xst)peak is recorded. On the contrary, Fig. 8 shows that, still at given �, (c / c� c)opt
increases very slightly. Though some differences can be appreciated, the various curves ap-
pear rather near to each other, especially for the last cited case of Fig. 8, Thus, it may be con-
cluded that the optimal tuning is weakly influenced by inherent damping C/Cc, except for the 
dependence of (x1 / xst)peak in Fig. 9 at small values of �, where the role of structural damping 
is more apparent in reducing the displacement amplitude at increasing C/Cc.
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The following Table 2 reports an abacus that allows to conveniently get fopt, (c / c� c)opt and 
corresponding (x1 / xst)peak at given � and C/Cc. As shown as well by Fig. 9, the maximum dis-
placement ratio seems to decrease asymptotically for high values of � approaching 1. Notice 
that the optimization procedure really brings at the same height the two displacement peaks 
that appear in the plot of x1 / xst as a function of g. This can be appreciated by 2-D and 3-D 
maps, that represent x1 / xst at the achieved optimal tuning. Two samples of these are reported 
in Figs. 10�11 and 12�13 for extreme values in the range of the abacus parameters. 

Figure 10: 2-D map of the displacement ratio as a function of g at optimal tuning, for 0.5%� �  and
cC C 2%� , with quote of the two peaks. 

Figure 11: 3-D map of the displacement ratio as a function of g and f at optimal tuning, for 0.5%� �  and 
cC C 2%� , with quote of the two peaks.
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Table 2: Abacus with estimate of optf , � �c opt
c c� and � �1 st peak

x x  for different values of �  and cC C (case 0� � ).

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.995027 0.043120 20.022772 0.0 0.990109 0.060586 14.179084 
0.5 0.994497 0.043946 17.051707 0.5 0.989370 0.061840 12.629496 
1.0 0.993927 0.044542 14.819509 1.0 0.988591 0.062860 11.372360 
1.5 0.993314 0.045321 13.085709 1.5 0.987777 0.063335 10.334655 
2.0 0.992632 0.046351 11.703664 2.0 0.986917 0.063745 9.464838 
2.5 0.991924 0.046840 10.577683 2.5 0.985990 0.064633 8.725481 
3.0 0.991149 0.047480 9.644010 3.0 0.985019 0.065718 8.090034 
3.5 0.990337 0.048207 8.857815 3.5 0.984013 0.066136 7.538492 
4.0 0.989469 0.048678 8.187712 4.0 0.982954 0.066437 7.055547 
4.5 0.988554 0.049512 7.609550 4.5 0.981840 0.066943 6.629457 

0.5%� �

5.0 0.987586 0.049544 7.106376 

1.0 %� �

5.0 0.980675 0.067940 6.250854 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.985221 0.074454 11.592367 0.0 0.980389 0.085829 10.052684 
0.5 0.984352 0.075028 10.539526 0.5 0.979401 0.086306 9.254163 
1.0 0.983434 0.075640 9.655237 1.0 0.978354 0.087059 8.568664 
1.5 0.982444 0.076835 8.902345 1.5 0.977251 0.087937 7.973915 
2.0 0.981418 0.077912 8.254765 2.0 0.976092 0.089128 7.453842 
2.5 0.980365 0.078082 7.691927 2.5 0.974928 0.089215 6.995306 
3.0 0.979244 0.079104 7.198727 3.0 0.973688 0.089992 6.588249 
3.5 0.978084 0.079827 6.763355 3.5 0.972399 0.090829 6.224735 
4.0 0.976879 0.080350 6.376367 4.0 0.971067 0.091554 5.898265 
4.5 0.975623 0.080870 6.030269 4.5 0.969690 0.092166 5.603571 

1.5 %� �

5.0 0.974318 0.081393 5.719050 

2.0%� �

5.0 0.968268 0.092664 5.336338 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.975624 0.095457 9.003327 0.0 0.970875 0.104536 8.229602 
0.5 0.974504 0.096389 8.359564 0.5 0.969642 0.105919 7.690412 
1.0 0.973347 0.097231 7.798583 1.0 0.968418 0.106112 7.214920 
1.5 0.972141 0.098077 7.305425 1.5 0.967104 0.107268 6.792845 
2.0 0.970889 0.098904 6.868911 2.0 0.965794 0.107398 6.415782 
2.5 0.969593 0.099719 6.480098 2.5 0.964399 0.108302 6.077126 
3.0 0.968250 0.100526 6.131685 3.0 0.962959 0.109205 5.771476 
3.5 0.966860 0.101333 5.817849 3.5 0.961476 0.110007 5.494345 
4.0 0.965430 0.101871 5.533805 4.0 0.959960 0.110375 5.241990 
4.5 0.963951 0.102490 5.275598 4.5 0.958392 0.110952 5.011309 

2.5 %� �

5.0 0.962419 0.103244 5.039934 

3.0%� �

5.0 0.956773 0.111674 4.799688 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.966172 0.112908 7.629036 0.0 0.961533 0.120307 7.145616 
0.5 0.964885 0.113651 7.165082 0.5 0.960162 0.121182 6.738251 
1.0 0.963552 0.114345 6.752126 1.0 0.958763 0.121654 6.373250 
1.5 0.962190 0.114806 6.382671 1.5 0.957294 0.122623 6.044397 
2.0 0.960753 0.115796 6.050235 2.0 0.955784 0.123541 5.746814 
2.5 0.959271 0.116782 5.749751 2.5 0.954250 0.124090 5.476303 
3.0 0.957762 0.117307 5.476926 3.0 0.952646 0.125075 5.229484 
3.5 0.956218 0.117606 5.228148 3.5 0.951013 0.125690 5.003454 
4.0 0.954609 0.118367 5.000479 4.0 0.949341 0.126204 4.795707 
4.5 0.952944 0.119380 4.791423 4.5 0.947613 0.126988 4.604215 

3.5%� �

5.0 0.951239 0.120151 4.598852 

4.0%� �

5.0 0.945823 0.128088 4.427200 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.956922 0.127502 6.745735 0.0 0.952374 0.133895 6.407835 
0.5 0.955492 0.128076 6.382691 0.5 0.950848 0.134996 6.080437 
1.0 0.953992 0.129137 6.055415 1.0 0.949338 0.135174 5.783720 
1.5 0.952487 0.129561 5.758949 1.5 0.947721 0.136344 5.513729 
2.0 0.950896 0.130679 5.489349 2.0 0.946109 0.136640 5.267146 
2.5 0.949311 0.130795 5.243196 2.5 0.944432 0.137343 5.041039 
3.0 0.947651 0.131545 5.017567 3.0 0.942686 0.138501 4.833119 
3.5 0.945926 0.132680 4.810141 3.5 0.940899 0.139567 4.641326 
4.0 0.944172 0.133431 4.618863 4.0 0.939102 0.139971 4.463862 
4.5 0.942393 0.133799 4.441928 4.5 0.937246 0.140719 4.299253 

4.5%� �

5.0 0.940544 0.134754 4.277862 

5.0%� �

5.0 0.935351 0.141233 4.146210 
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cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.947862 0.140119 6.117509 0.0 0.943373 0.146225 5.864651 
0.5 0.946264 0.141342 5.819347 0.5 0.941769 0.146764 5.590894 
1.0 0.944711 0.141246 5.547965 1.0 0.940068 0.148023 5.340796 
1.5 0.943032 0.142438 5.299979 1.5 0.938416 0.147923 5.111469 
2.0 0.941330 0.143259 5.072668 2.0 0.936631 0.149190 4.900491 
2.5 0.939620 0.143504 4.863510 2.5 0.934817 0.150219 4.705863 
3.0 0.937809 0.144742 4.670547 3.0 0.933017 0.150355 4.525738 
3.5 0.935973 0.145606 4.492025 3.5 0.931128 0.151160 4.358657 
4.0 0.934121 0.145981 4.326375 4.0 0.929223 0.151547 4.203267 
4.5 0.932186 0.147130 4.172368 4.5 0.927223 0.152834 4.058416 

5.5%� �

5.0 0.930238 0.147571 4.028789 

6.0 %� �

5.0 0.925240 0.152980 3.923130 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.938956 0.151700 5.641751 0.0 0.934541 0.157431 5.443543 
0.5 0.937264 0.152646 5.388806 0.5 0.932849 0.157703 5.208365 
1.0 0.935580 0.152944 5.156867 1.0 0.931060 0.158750 4.992086 
1.5 0.933781 0.154231 4.943480 1.5 0.929270 0.159183 4.792609 
2.0 0.931982 0.154885 4.746668 2.0 0.927409 0.160057 4.608048 
2.5 0.930146 0.155490 4.564517 2.5 0.925476 0.161360 4.436918 
3.0 0.928274 0.155915 4.395611 3.0 0.923586 0.161381 4.277758 
3.5 0.926337 0.156754 4.238499 3.5 0.921601 0.162131 4.129464 
4.0 0.924347 0.157670 4.092081 4.0 0.919587 0.162748 3.990955 
4.5 0.922348 0.158067 3.955306 4.5 0.917509 0.163630 3.861346 

6.5 %� �

5.0 0.920268 0.159085 3.827306 

7.0%� �

5.0 0.915412 0.164180 3.739815 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.930189 0.162609 5.265663 0.0 0.925919 0.167077 5.104961 
0.5 0.928463 0.162760 5.045990 0.5 0.924098 0.167859 4.898828 
1.0 0.926600 0.164127 4.843387 1.0 0.922240 0.168564 4.708305 
1.5 0.924775 0.164427 4.656055 1.5 0.920351 0.169156 4.531654 
2.0 0.922859 0.165405 4.482294 2.0 0.918360 0.170555 4.367521 
2.5 0.920935 0.165879 4.320819 2.5 0.916390 0.171072 4.214640 
3.0 0.918934 0.166907 4.170359 3.0 0.914385 0.171497 4.071917 
3.5 0.916908 0.167630 4.029879 3.5 0.912331 0.172056 3.938414 
4.0 0.914843 0.168357 3.898427 4.0 0.910204 0.172998 3.813298 
4.5 0.912758 0.168649 3.775209 4.5 0.908062 0.173604 3.695817 

7.5 %� �

5.0 0.910589 0.169640 3.659487 

8.0%� �

5.0 0.905875 0.174170 3.585334 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.921619 0.172263 4.958791 0.0 0.917419 0.176518 4.825197 
0.5 0.919756 0.173013 4.764719 0.5 0.915463 0.177912 4.641792 
1.0 0.917863 0.173666 4.584824 1.0 0.913573 0.178040 4.471451 
1.5 0.915932 0.174232 4.417755 1.5 0.911566 0.179054 4.312925 
2.0 0.913930 0.175238 4.262176 2.0 0.909561 0.179582 4.165018 
2.5 0.911955 0.175283 4.116997 2.5 0.907531 0.179846 4.026802 
3.0 0.909855 0.176455 3.981218 3.0 0.905383 0.181163 3.897287 
3.5 0.907773 0.176830 3.854012 3.5 0.903276 0.181348 3.775794 
4.0 0.905600 0.177880 3.734612 4.0 0.901057 0.182513 3.661573 
4.5 0.903421 0.178445 3.622331 4.5 0.898851 0.182927 3.554026 

8.5%� �

5.0 0.901198 0.178979 3.516590 

9.0%� �

5.0 0.896586 0.183541 3.452610 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.913230 0.180928 4.702447 0.0 0.909056 0.185508 4.589121 
0.5 0.911270 0.181936 4.528578 0.5 0.907097 0.186038 4.423919 
1.0 0.909333 0.182144 4.366852 1.0 0.905053 0.187122 4.269917 
1.5 0.907262 0.183517 4.216003 1.5 0.903050 0.187231 4.126089 
2.0 0.905216 0.184049 4.075078 2.0 0.900917 0.188393 3.991458 
2.5 0.903090 0.185134 3.943127 2.5 0.898802 0.188888 3.865222 
3.0 0.900997 0.185239 3.819338 3.0 0.896601 0.189910 3.746653 
3.5 0.898825 0.185793 3.703029 3.5 0.894390 0.190607 3.635072 
4.0 0.896574 0.186919 3.593517 4.0 0.892147 0.191116 3.529916 
4.5 0.894350 0.187075 3.490311 4.5 0.889830 0.192132 3.430666 

9.5%� �

5.0 0.892035 0.187925 3.392851 

10.0%� �

5.0 0.887513 0.192591 3.336839 
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Figure 12: 2-D map of the displacement ratio as a function of g at optimal tuning, for � 10%�  and
�cC C 5% , with quote of the two peaks. 

Figure 13: 3-D map of the displacement ratio as a function of g and f at optimal tuning, for 10%� �  and 
cC C 5%� , with quote of the two peaks. 

3.2 Optimal tuning for harmonic excitation at the support (� = 1 )

The previous study is repeated for the case of harmonic excitation at the support. Correspond-
ing plots are presented in what follows. Fig. 14 shows that, even in this case, the minimax 
tuning of fopt is practically coincident with Den Hartog’s-type estimate that can be obtained 
from a fixed-points analysis of Scheme 5 in Table 1, as reported by Rana and Soong [3]: 
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fopt = 1/(1+�)·� ((2��)/2). The same basically applies for the evaluation of (x1 / xst)peak, which 
should compare to (x1 / xst)peak =  (1+�)·�(2 / �), as reported in Fig. 16. Again, the estimate of 
(c / c� c)opt, comparing to (c / c� c)opt = � (3/8 ·� /(1+�))·� (2/(2��)) slightly diverges for high �
values larger than about �25% 30%  (Fig. 15).

Figure 14: optf as a function of �  by a minimax procedure and comparison to Den Hartog’s-type tuning 
( cC C 0� , 1� � ).

Figure 15: � �c opt
c c� as a function of �  by a minimax procedure and comparison to Den Hartog’s-type tuning 

( cC C 0� , 1� � ).
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Figure 16: � �1 st peak
x x as a function of �  by a minimax procedure and comparison to Den Hartog’s-type tuning 

( cC C 0� , 1� � ).

The influence of structural damping ratio C/Cc is studied as well as before. The corre-
sponding plots are reported in following Figs. 17�19.

Figure 17: optf as a function of �  by a minimax procedure, for different values of cC C ( 1� � ).
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Figure 18: � �c opt
c c� as a function of � by a minimax procedure, for different values of cC C ( 1� � ).

Figure 19: � �1 st peak
x x as a function of �  by a minimax procedure, for different values of cC C ( 1� � ).

It can be noticed that, with respect to the previous results (� = 0), the scatter of parameters 
fopt, (c / c� c)opt and resulting (x1 / xst)peak at given � and changing C/Cc is more apparent. On the 
other hand, the global behaviour shares similar features: at given �, fopt and (x1 / xst)peak de-
crease at increasing C/Cc, while (c / c� c)opt increases. The trends depicted in Figs. 17�19 appear 
in line with the results obtained by other authors, e.g. [5,8]. Our results are also summarised 
quantitatively by the abacus reported in following Table 3, which compares as well to similar 
output from the literature, e.g. [3,4,8]. 



Egidio Rizzi, Daniele Brescianini, Matteo Scotti 

18

Table 3: Abacus with estimate of optf , � �c opt
c c� and � �1 st peak

x x  for different values of �  and cC C (case � 1� ).

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.993785 0.043613 20.100778 0.0 0.987621 0.060966 14.285077 
0.5 0.992962 0.044314 17.113400 0.5 0.986480 0.061901 12.720794 
1.0 0.992060 0.044759 14.870498 1.0 0.985274 0.062783 11.452965 
1.5 0.991117 0.045645 13.129361 1.5 0.984001 0.063626 10.406006 
2.0 0.990082 0.046237 11.740895 2.0 0.982665 0.064443 9.528327 
2.5 0.989013 0.047259 10.610556 2.5 0.981233 0.064870 8.782425 
3.0 0.987868 0.047945 9.672749 3.0 0.979760 0.065618 8.141345 
3.5 0.986648 0.048460 8.883095 3.5 0.978226 0.066361 7.584975 
4.0 0.985346 0.048801 8.209837 4.0 0.976618 0.066966 7.097853 
4.5 0.983979 0.049142 7.629475 4.5 0.974933 0.067429 6.668049 

0.5%� �

5.0 0.982617 0.050221 7.124186 

1.0 %� �

5.0 0.973200 0.068019 6.286204 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.981514 0.074467 11.722659 0.0 0.975463 0.085855 10.203001 
0.5 0.980142 0.075597 10.655167 0.5 0.973885 0.086723 9.389907 
1.0 0.978705 0.076696 9.758574 1.0 0.972261 0.088002 8.691742 
1.5 0.977143 0.076705 8.995786 1.5 0.970517 0.088416 8.086333 
2.0 0.975577 0.077776 8.339178 2.0 0.968751 0.089395 7.556712 
2.5 0.973941 0.078695 7.768848 2.5 0.966909 0.090245 7.090034 
3.0 0.972233 0.079516 7.269264 3.0 0.964996 0.090968 6.675765 
3.5 0.970451 0.080187 6.828158 3.5 0.963011 0.091606 6.305837 
4.0 0.968595 0.080726 6.435999 4.0 0.960940 0.092034 5.973619 
4.5 0.966735 0.081846 6.085444 4.5 0.958910 0.093423 5.673736 

1.5 %� �

5.0 0.964774 0.082607 5.770192 

2.0%� �

5.0 0.956718 0.093942 5.401837 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.969504 0.096396 9.171291 0.0 0.963538 0.104774 8.413815 
0.5 0.967727 0.096835 8.512927 0.5 0.961653 0.106001 7.859577 
1.0 0.965926 0.097981 7.939024 1.0 0.959690 0.107009 7.371219 
1.5 0.964054 0.099003 7.434879 1.5 0.957662 0.107926 6.937555 
2.0 0.962101 0.099713 6.988459 2.0 0.955561 0.108767 6.550388 
2.5 0.960063 0.100244 6.590936 2.5 0.953385 0.109467 6.202613 
3.0 0.958010 0.101336 6.234633 3.0 0.951161 0.110299 5.888734 
3.5 0.955843 0.101867 5.913799 3.5 0.948827 0.110709 5.604178 
4.0 0.953595 0.102270 5.623515 4.0 0.946537 0.112133 5.345096 
4.5 0.951380 0.103510 5.359580 4.5 0.944057 0.112403 5.108285 

2.5 %� �

5.0 0.949018 0.104050 5.118755 

3.0%� �

5.0 0.941606 0.113422 4.891068 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.957695 0.113574 7.827996 0.0 0.951851 0.120872 7.358422 
0.5 0.955627 0.114041 7.349066 0.5 0.949690 0.121886 6.936085 
1.0 0.953507 0.114801 6.923062 1.0 0.947462 0.122820 6.557658 
1.5 0.951378 0.116216 6.541805 1.5 0.945154 0.123575 6.216922 
2.0 0.949111 0.116708 6.198868 2.0 0.942774 0.124248 5.908600 
2.5 0.946815 0.117627 5.888951 2.5 0.940428 0.125918 5.628374 
3.0 0.944479 0.118761 5.607471 3.0 0.937914 0.126492 5.372633 
3.5 0.942026 0.119336 5.350932 3.5 0.935361 0.127290 5.138509 
4.0 0.939539 0.120177 5.116187 4.0 0.932737 0.128026 4.923358 
4.5 0.936974 0.120915 4.900637 4.5 0.930054 0.128801 4.725063 

3.5%� �

5.0 0.934327 0.121475 4.702156 

4.0%� �

5.0 0.927314 0.129619 4.541756 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.946094 0.128198 6.971467 0.0 0.940375 0.134857 6.645894 
0.5 0.943813 0.129142 6.593445 0.5 0.938013 0.136136 6.303451 
1.0 0.941461 0.129976 6.252702 1.0 0.935551 0.136922 5.993203 
1.5 0.939059 0.130952 5.944143 1.5 0.933026 0.137730 5.710946 
2.0 0.936570 0.131680 5.663553 2.0 0.930439 0.138565 5.453145 
2.5 0.934019 0.132434 5.407385 2.5 0.927792 0.139432 5.216839 
3.0 0.931428 0.133427 5.172630 3.0 0.925089 0.140334 4.999583 
3.5 0.928737 0.134044 4.956877 3.5 0.922315 0.141179 4.799143 
4.0 0.926038 0.135159 4.757875 4.0 0.919512 0.142260 4.613773 
4.5 0.923226 0.135811 4.573888 4.5 0.916587 0.142884 4.441850 

4.5%� �

5.0 0.920388 0.136763 4.403256 

5.0%� �

5.0 0.913644 0.143836 4.281978 
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cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.934714 0.141225 6.367274 0.0 0.929129 0.147678 6.125520 
0.5 0.932217 0.142076 6.054078 0.5 0.926532 0.148439 5.836765 
1.0 0.929693 0.143396 5.769061 1.0 0.923913 0.149656 5.572980 
1.5 0.927070 0.144232 5.508655 1.5 0.921212 0.150654 5.331115 
2.0 0.924358 0.144787 5.269955 2.0 0.918410 0.151277 5.108657 
2.5 0.921622 0.145756 5.050444 2.5 0.915516 0.151627 4.903463 
3.0 0.918829 0.146765 4.847897 3.0 0.912681 0.153095 4.713589 
3.5 0.915982 0.147816 4.660551 3.5 0.909696 0.153754 4.537491 
4.0 0.913072 0.148834 4.486788 4.0 0.906709 0.154907 4.373747 
4.5 0.910043 0.149431 4.325185 4.5 0.903622 0.155759 4.221142 

5.5%� �

5.0 0.907027 0.150552 4.174597 

6.0 %� �

5.0 0.900460 0.156499 4.078625 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.923594 0.153785 5.913482 0.0 0.918039 0.158778 5.725573 
0.5 0.920921 0.154688 5.645415 0.5 0.915349 0.160489 5.475347 
1.0 0.918158 0.155300 5.399693 1.0 0.912505 0.161127 5.245224 
1.5 0.915321 0.155805 5.173713 1.5 0.909581 0.161590 5.032976 
2.0 0.912470 0.156819 4.965263 2.0 0.906664 0.162754 4.836715 
2.5 0.909574 0.157981 4.772407 2.5 0.903626 0.163401 4.654713 
3.0 0.906618 0.159124 4.593552 3.0 0.900616 0.164779 4.485513 
3.5 0.903508 0.159508 4.427298 3.5 0.897452 0.165375 4.327856 
4.0 0.900410 0.160489 4.272302 4.0 0.894231 0.166064 4.180659 
4.5 0.897280 0.161665 4.127588 4.5 0.891013 0.167200 4.042909 

6.5 %� �

5.0 0.894081 0.162761 3.992179 

7.0%� �

5.0 0.887726 0.168256 3.913788 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.912598 0.164362 5.557676 0.0 0.907198 0.169643 5.406639 
0.5 0.909732 0.164967 5.322940 0.5 0.904299 0.170697 5.185446 
1.0 0.906901 0.166620 5.106459 1.0 0.901343 0.171814 4.980967 
1.5 0.903892 0.167041 4.906261 1.5 0.898252 0.172193 4.791441 
2.0 0.900905 0.168278 4.720706 2.0 0.895191 0.173427 4.615363 
2.5 0.897770 0.168767 4.548254 2.5 0.891971 0.173835 4.451411 
3.0 0.894677 0.170104 4.387585 3.0 0.888797 0.175133 4.298336 
3.5 0.891493 0.171163 4.237601 3.5 0.885558 0.176355 4.155216 
4.0 0.888130 0.171360 4.097305 4.0 0.882162 0.176850 4.021108 
4.5 0.884894 0.172908 3.965796 4.5 0.878867 0.178487 3.895205 

7.5 %� �

5.0 0.881445 0.173422 3.842318 

8.0%� �

5.0 0.875330 0.178880 3.776806 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.901837 0.174652 5.269916 0.0 0.896519 0.179434 5.145406 
0.5 0.898827 0.175287 5.060683 0.5 0.893510 0.180818 4.946895 
1.0 0.895822 0.176645 4.866833 1.0 0.890363 0.181415 4.762540 
1.5 0.892662 0.177074 4.686826 1.5 0.887204 0.182470 4.590997 
2.0 0.889547 0.178488 4.519199 2.0 0.883931 0.183085 4.431001 
2.5 0.886360 0.179733 4.362829 2.5 0.880671 0.184300 4.281451 
3.0 0.882990 0.180004 4.216615 3.0 0.877365 0.185618 4.141443 
3.5 0.879657 0.181077 4.079659 3.5 0.873924 0.186331 4.010053 
4.0 0.876274 0.182186 3.951113 4.0 0.870379 0.186779 3.886578 
4.5 0.872821 0.183220 3.830280 4.5 0.866894 0.188062 3.770351 

8.5%� �

5.0 0.869299 0.184178 3.716478 

9.0%� �

5.0 0.863325 0.189150 3.660743 

cC C [%] optf c opt( c c )� 1 st peak( x x ) cC C [%] optf c opt( c c )� 1 st peak( x x )

0.0 0.891235 0.183948 5.031565 0.0 0.885996 0.188297 4.926931 
0.5 0.888111 0.184821 4.842580 0.5 0.882867 0.189800 4.746533 
1.0 0.884939 0.185869 4.666774 1.0 0.879561 0.190117 4.578492 
1.5 0.881752 0.187285 4.502881 1.5 0.876333 0.191733 4.421505 
2.0 0.878453 0.188197 4.349757 2.0 0.872986 0.192803 4.274640 
2.5 0.875042 0.188723 4.206415 2.5 0.869581 0.193848 4.136941 
3.0 0.871654 0.189918 4.071984 3.0 0.866042 0.194340 4.007625 
3.5 0.868201 0.191040 3.945683 3.5 0.862472 0.195098 3.885976 
4.0 0.864679 0.192089 3.826829 4.0 0.858982 0.196787 3.771334 
4.5 0.861088 0.193065 3.714785 4.5 0.855280 0.197448 3.663150 

9.5%� �

5.0 0.857409 0.193866 3.609027 

10.0%� �

5.0 0.851523 0.198166 3.560922 
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4 SEISMIC RESPONSE OF A TEN-STOREY SHEAR-TYPE BUILDING WITH 
TMD ADDED ON TOP 

A numerical test on the performance of a TMD device placed on top of a prototype ten-storey 
shear-type building is developed. The base of the building is subjected to seismic ground mo-
tion, with input from El Centro Earthquake, Imperial Valley, 1940. Mass and stiffness distri-
butions of the building without TMD are reported below (Fig. 20). No structural damping is 
assumed at first. The numerical response of the system is evaluated by the average accelera-
tion method of the Newmark family (� = 1/4, � = 1/2). The time step is taken as 
�t = 0.0115 s, on a run-time window of 45 s.

�  �  3M 10 diag 430,406 ,382,358,334,310,286 ,262,238,215 kg� (2)

�  6

661 321 0 0 0 0 0 0 0 0
321 623 302 0 0 0 0 0 0 0
0 302 585 283 0 0 0 0 0 0
0 0 283 548 264 0 0 0 0 0
0 0 0 264 510 246 0 0 0 0K 10 0 0 0 0 246 472 227 0 0 0
0 0 0 0 0 227 434 208 0 0
0 0 0 0 0 0 208 397 189 0
0 0 0 0 0 0 0 189 359 170
0 0 0 0 0 0 0 0 170 170

�� 

� �� �
� �� �� �

� �� �
� �� �� � �� �

� � ��
� ��

� ��
� �� �

N
m

�
�
�
�
�

(3)

Figure 20: Scheme of a prototype ten-storey shear-type building with TMD added on top (chosen mass ratio 
� = 3%, resulting first mode mass ratio �1 = 5.26%).
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For the tuning of the TMD parameters, namely TMD spring stiffness kopt and damping co-
efficient copt, the procedure proposed by Rana and Soong [3] is adopted. By assuming a mass 
ratio � = 3% and knowing the total mass of the structure as MTOT = 3221000 kg, the TMD 
mass is determined as m = � MTOT = 96630 kg. The assumed mass ratio, around the upper 
bound of typical values of �, is higher than that assumed by Sladek and Klingner [5] 
(� = 0.65 %), which concluded that such light TMD had practically no effect on the seismic 
performance. The first modal mass is then obtained as M1 = �!1

T�·[M]·�!1�, where �!1� is 
the eigenvector corresponding to the fundamental mode of vibration normalised such that to 
have unitary component at the last floor where the TMD is going to be inserted. From eigen-
value analysis one has M1 = 1837400 kg, from which the mass ratio associated to the first 
mode is obtained as �1 = m/M1 = 0.0526. The natural angular frequency of the fundamental 
mode is also found as �1 = 4.7383 rad/s. By considering that the structure is assumed at first 
with no structural damping, one has the following estimates for the best tuning (with input 
excitation at the support, coherent with case � = 1 previously treated): 

� �
;1 1

opt
1 c 1 1opt

2 31 c 2f 0.9370 0.1392
1 2 c 8 1 2

� �
� � �

� �� 

� 
 � � 
 �� �� 
 � �� ��

(4)

and the TMD parameters are finally obtained as: 

;2 2
opt opt 1 opt opt 1

c opt

ck f m 1904742 N m c 2 f m 119438 N s m .
c

� �
� �

� 
 
 " � 
 
 
 
 " 
� �
� ��

  (5) 

The numerical seismic responses of the building with and without TMD are then evaluated 
and compared. Fig. 21 reports the displacement of the top floor, with and without TMD, for 
the case of zero structural damping. The plot clearly shows the role of the TMD in reducing 
the structural response at zero inherent damping. 

Figure 21: Top-floor displacement of the building with or without TMD. Case with no structural damping. 
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To enquire the role of damping in the structural response, further analyses are developed 
for different values of inherent damping. By taking C/Cc = 2% for the first two modes, with 
natural angular frequencies �1 = 4.7383 rad/s and �2 = 12.5784 rad/s and assuming classical 
Rayleigh damping calibrated on these first two modes, the optimal tuning parameters of the 
TMD need to be re-estimated. Let us leave unchanged the mass ratio associated to the first 
mode, �1 = 0.0526. By the minimax procedure as reported in the preceding section, the fol-
lowing tuning parameters can be estimated: fopt = 0.927258 and (c / c� c)opt = 0.141758. Then, 
as done previously, spring stiffness and damping coefficient of the TMD are evaluated as 
kopt � 1865510 N/m and copt � 120410 N·s/m. The numerical responses in terms of displace-
ment of the top floor with and without TMD are reported in Fig. 22. 

Figure 22: Top-floor displacement of the building with or without TMD. Case with 2% structural damping for 
the first two modes and classical Rayleigh damping. 

Last, the same procedure is re-applied for the case C/Cc = 5% for the first two modes, 
again in the hypothesis of Rayleigh damping. Kept mass ratio �1 = 0.0526, the following op-
timal parameters are found by the minimax procedure: fopt = 0.910196 and 
(c / c� c)opt = 0.147424, leading to kopt � 1797326 N/m and copt � 122876 N·s/m. Fig. 23 reports 
the responses of the top-floor displacement. 

From the plots in Figs. 21�23 the effect of the TMD device can be appreciated at increas-
ing structural damping. Obviously, the effectiveness of the device is better appreciated at de-
creasing values of structural damping. To further evaluate quantitatively the reduction in 
seismic response, further output is also provided in following Table 4. There, the vibration 
reduction in terms of top-floor displacement, velocity and acceleration is evaluated for the 
different damping ratios. Both the peak values of these parameters and the average values in 
time estimated by the Root Mean Square method are analysed, to evaluate as well a global 
performance in the whole time window. Higher reduction is observed on the RMS estimates, 
basically in decreasing order for displacement, velocity and acceleration. 

C/Cc = 2% 
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Figure 23: Top-floor displacement of the building with or without TMD. Case with 5% structural damping for 
the first two modes and classical Rayleigh damping. 

Table 4: Evaluation of the structural performance of the TMD device for the different damping ratios assumed. 

STRUCTURAL SYSTEM maxx
[m]

�maxx
[m/s] 

��maxx
[m/s2]

RMSx
[m]

� RMSx
[m/s]

��RMSx
[m/s2]

Without TMD, undamped � �cC /C 0%� 0.2465 1.6824 19.7690 0.1293 0.6819 7.0168 

With TMD, undamped � �cC /C 0%� 0.1597 1.0539 13.0962 0.0376 0.2565 3.6238 

Vibration reduction 35.2% 37.4% 33.8% 70.9% 62.4% 48.4%

Without TMD, damped � �cC /C 2%� 0.1749 1.0023 9.2692 0.0557 0.2883 1.9599 

With TMD, damped � �cC /C 2%� 0.1554 0.9110 8.9629 0.0329 0.1860 1.5661 

Vibration reduction 11.1% 9.1% 3.3% 40.9% 35.5% 20.1%

Without TMD, damped � �cC /C 5%� 0.1518 0.8279 8.4166 0.0386 0.2033 1.3890 

With TMD, damped � �cC /C 5%� 0.1383 0.7540 8.1659 0.0329 0.1860 1.5661 

Vibration reduction 8.9% 8.9% 3.0% 25.6% 22.7% 12.4%

5 CONCLUSIONS  
The present note considered the optimal tuning of TMD devices. After reviewing the classical 
theory by Den Hartog [1], a systematic analysis has revealed the role of structural damping 
and of the location of the harmonic excitation (at the primary mass or at the support). Ta-
bles 1�3 and Figures 1�19 summarised the achieved results. 

On the optimal tuning by a minimax procedure, the estimate of the frequency ratio fopt
yields, at no structural damping, practically the same results as Den Hartog’s ones. This con-
stitutes a sort of numerical proof of those. Some divergence appears for the tuning of the 
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damping ratio (c / c� c)opt when the mass ratio increases beyond high values of about 0.25�0.30.
It increases slightly with respect to Den Hartog’s estimate. Accordingly, the lowest estimate 
of (x1 /xst)peak is obtained by the minimax procedure, though is still very close to Den Hartog’s 
prediction. Same trends are confirmed for the case of harmonic excitation at the support. Tun-
ing has been then investigated systematically at increasing structural damping, for different 
mass ratios. Plots with the functional dependence of the optimal parameters and synoptic aba-
cuses have been produced. This should allow easy access to the best tuning. This way of pro-
ceeding was inspired by the work of Rana and Soong [3]. With respect to their results, our 
estimate of (x1 /xst)peak takes slightly lower values, which should confirm the higher precision 
of the present analysis. A comparison to the alternative approach by Villaverde [6] and Sadek 
et al. [8], which do not consider the role of the external action, still needs to be made. 

From the numerical analysis of the seismic response of a prototype ten-storey shear-type 
building (Figs. 21�23, Table 4) it might be concluded that: the reduction of structural vibra-
tion of the top floor in terms of maximum displacement may be quantified as 35.2% for the 
undamped case, 11.1% in case of 0.02 damping, 8.9% in case of 0.05 damping; in terms of 
RMS average of the top-floor displacement a higher reduction as 70.9% for no damping, 
40.9% for 0.02 damping, 25.6% for 0.05 damping. As expected, at constant inserted mass of 
the TMD, the effectiveness of the device is less apparent at increasing structural damping. 
Also, lower reductions are most often obtained in terms of top-floor velocity and acceleration. 

This contribution attempted a preliminary study on the usefulness of passive TMD devices 
in the field of seismic engineering, where the true validity of the use of a TMD element is still 
debated in the literature. Further results on the tuning at different seismic input should help in 
clearing if passive TMDs could work effectively for seismic isolation. The analysis of tuning 
for detailed practical cases is also left for further work.
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