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ABSTRACT
Uniformly propagating Portevin–Le Chatelier (PLC) plastic deformation bands are studied
theoretically and numerically in terms of a model which incorporates the dynamic strain age-
ing kinetics and the effect of long-range dislocation interactions. PLC deformation banding
is traced back to a wave propagation phenomenon, and the problem of propagation velocity
selection is addressed for both strain- and stress-controlled tensile tests. According to the
control mode, the model reveals fundamental differences in the velocity selection mecha-
nism, which compare favourably with numerical simulations and experimental observations.

1. Introduction
The Portevin–Le Chatelier (PLC) effect, also known as jerky flow, denotes the serrated
yielding of solid solutions. The PLC effect represents a strain-rate softening instability (a
negative strain-rate sensitivity (SRS) of the flow stress), the microphysical reason of which
consists in a repeated break-away of dislocations from, and subsequent recapture by, mobile
solute atoms,i.e. dynamic strain ageing (DSA).

Recently, a new PLC model has been introduced [1, 2]. Its implications on the velocity
selection problem during band propagation are to be discussed in the present work, in par-
ticular, as far as tensile tests at constantstressrate are concerned (σ̇ = const). In this case,
staircase-type stress–strain curves go along with PLC bands propagating rapidly at virtually
constant stress, while quasi-elastic loading intervals separate the nucleation/propagation of
successive bands. From the characteristic times involved (the duration of band propagation
tprop ≈ 10−1 s is much less than the duration of the intermediate loading phasestload ≈ 10 s)
we conclude that most of ageing occurs during elastic loading. In fact, as the characteristic
time of solute diffusion largely exceedstprop, dynamicstrain ageing during band propagation
is not significant, butstaticageing occurs during elastic loading transients.
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2. DSA-based model of the PLC effect
Consider a plastically-deforming material described by an Arrhenius law for the plastic
strain rateε,t, which depends on an effective Gibbs’ free activation enthalpyG = G0 +∆G,
with an additional enthalpy∆G in proportion to the solute content accumulated at glide
dislocations:ε,t = ν Ω exp

[
−G0+∆G

kT
+ σeff

S0

]
≡ η Ω exp[−g] f . Here a generalized driving

forcef and the reduced additional enthalpyg have been defined by:

f =
ν

η
exp

[
−G0

kT

]
exp

[
σeff

S0

]
, and g =

∆G

kT
, (1)

whereν is an appropriate attack frequency,Ω is the elementary strain associated with a sin-
gle activation step,G0 is the basic activation enthalpy in the absence of DSA,k is Boltzmann
constant andT absolute temperature.S0 denotes theinstantaneousSRS of the flow stress.
By the parameterη we have introduced the ageing rate (∝ solute mobility) as a relevant
model time scale (cf. Eqs. (2,3)), such that the generalized driving forcef and the scaled
DSA-related activation enthalpyg are the dimensionless dynamical variables of the model.
Expressed in non-dimensional terms the evolution equations of the model read [1, 2]:

ḟ = σ̇f − θ exp[−g]f 2 , (2)

ġ = g′′ + (g/g∞)−(1−n)/n(g∞ − g)− f exp[−g] g . (3)

Here dots stand for differentiation with respect to dimensionless timet̃ = ηt. Dimension-
less parameters have been introduced by scaling the external stress rateσext,t and the strain
hardening coefficienth according toσ̇ = σext,t/(ηS0), θ = Ωh/S0, andg∞ denotes the
asymptotic value ofg associated with completely aged dislocations (saturation value ofg).
The exponentn governs the initial ageing kinetics,g ∝ tn, well before saturation sets in.

The effective stress in Eq. (1) is defined as the externally applied stressσext (flow stress)
minus the internal stressσint (athermal back stress),σeff = σext − σint. Accordingly, the
driving forcef changes owing to the external stress rateσext,t diminished by the contribution
from strain hardening,σint,t = hε,t. Eq. (2) then expresses the balance between external
loading and strain hardening of the specimen. The termg∞ − g in Eq. (3) describes the
effect of ageing:g approaches the saturation value at unit rate on the non-dimensional time
scalet̃. The last term on the r.h.s. of Eq. (3), which is equivalent to−gε,t/(ηΩ) expresses
the loss of solute contentg in the glide dislocations owing to thermally activated unpinning
at the dimensionless rateε,t/(ηΩ).

The spatial coupling termg′′ of Eq. (3) represents a second order gradient with respect
to the tensile directionx in terms of the non-dimensional coordinatex̃ =

√
η/D x. In

the present case, the diffusion-like coupling coefficientD = β(µ/S0)εb,ts
2 (whereβ≈

0.1 is a numerical prefactor,µ the shear modulus) is traced back to long-range dislocation
interactions associated with gradients in glide velocity [1].

In the following sections tensile tests at constant strain rate (ε̇ = const) and at constant
stress rate (̇σ = const) will be considered separately. We investigate the problem of propa-
gation velocity selection of solitary deformation bands,i.e. uniformly translating strain-rate
profiles of the formε,t = ε,t(x− cbt). As we shall see, the solution to this problem depends
on the test control mode.
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3. Velocity selection forε̇ = const
The plastically deforming solid solution is an excitable medium in which various types of
waves may nucleate/propagate. The most regular excitation is a Type-A PLC band, which
represents a solitary wave propagating at constant speedcb. The derivation of the band
parameters has been presented in [1]. Here we focus on a qualitative discussion on band
speed selection. To this end we note that a PLC band represents a zone of almost unaged
dislocations (g small) which propagates into an aged state (g nearg∞). The unpinning of
dislocations in the front of the band occurs at near constantf , as this is a comparatively slow
variable unable to follow rapid ageing changes. So we may concentrate on the dynamics of
a solitary wave ing with ġ = −c g′ andc = (Dη)−1/2cb denoting the non-dimensional band
speed. Consider Eq. (3) rewritten in the form (n = 1, for simplicity):

g′′ + cg′ = −∂U

∂g
with U = g∞g − 1

2
g2 + f(g + 1) exp[−g] . (4)

The dynamical ‘potential’U is plotted in Fig. 1 for variousf values. For intermediate
valuesfmin<f<fmax, U exhibits two stationary points corresponding to dynamically stable
steady states (the strongly aged state in front of the advancing band and the almost unaged
state within the band), separated by a minimum (unstable steady state at intermediateg).
The valuefmax at which the strongly aged steady state disappears corresponds to the upper
yield point associated with the nucleation of a new band. Band propagation occurs as band
nucleation goes along with a certain stress drop. The switching of one stable state to the
other, which is associated with the passage of the band front, can then be interpreted in terms
of a simple mechanical analogue: Eq. (4) is tantamount to the equation of motion of a unit
mass particle in the ‘potential’U subjected to dynamic friction with ‘damping coefficient’c.
The solitary wave solution corresponds to a situation where the particle originates from the
left maximum at ‘time’x̃→−∞, moves through the potential valley, and comes to rest again
at the right maximum for̃x→∞. Obviously, this particular trajectory exists only for a certain
value of ‘damping coefficient’, such that the propagation velocityc is well-defined [1].
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Figure 1: Illustration of the dynamic potentialU de-
fined in Eq. (4) for various values of the generalized
driving forcef (andg∞= 6).
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Figure 2: Spatio-temporal band correlation for a nu-
merical tensile test at constant stress-rate:n = 1/3,
σ̇ = 0.5 MPa/s.
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4. Velocity selection forσ̇ = const
As compared to strain control (ε̇ = const), the description of stress controlled tests with
σ̇ = const is formally simplified by the fact that the ‘machine equation’ does not affect the
dynamics. The non-local feedback provided by the tensile machine may induce additional
deformation modes, i.e. intermittent bands of Type B and randomly nucleating bands of
Type C [1, 2]. Thereforėσ = const tests do not reveal analogues of Types B and C. Also,
the propagation velocity of strain-controlled Type-A bands is determined by the imposed
deformation ratėε, while it is not clear what controls velocity in ȧσ = const test. In
principle, the strain bursts could propagate at any speed. Experimental investigations show
that the band velocitiescb may significantly exceed those observed forε̇ = const. Moreover,
one notes two important differences. Firstly, forσ̇ = const, the stress rise occurring between
two successive PLC bands goes along with quasi-elastic deformation, until a critical stress
level for the next nucleation is reached. As band nucleation occurs without stress drop, the
specimen is prepared in a marginally stable state (the horizontal inflection point forf ≈ 30
in Fig. 1), into which the band propagates. This is to be distinguished from the propagation
into a metastable state as it was discussed in Section 3. Secondly, most of ageing occurs
statically during quasi-elastic loadings, whiledynamicstrain ageing is negligible during
short propagation periods. The PLC band dynamics depends on the degree of static ageing
that the specimen in front of the band was subjected to and, hence, on the applied stress
rateσ̇: the shorter the elastic loading phase,i.e. the higherσ̇, the less ageing has occurred.

Again, Fig. 1 can be invoked to illustrate the velocity selection problem. Now the solu-
tion in question (the particle originates from the dynamically stable unaged state associated
with the left maximum and comes asymptotically to rest at the horizontal inflection point
corresponding to the marginally stable state in front of the band) exists for any ‘damping’
c > c∗. Apart from this lower limit velocityc∗ (corresponding to the marginally stable case
where group velocity and phase velocity of the plastic wave coincide), a particular propa-
gation speed does not exist. Accordingly, we expect a less regular space-time correlation of
deformation bands exhibiting a spectrum of propagation velocities.

That was confirmed by numerical simulations of the model, with specimen discretized
in 100 segments (’blocks’). Fig. 2 shows a typical space-time(stress) correlation pattern of
the local extrema of the plastic strain rate. One notes that the deformation bands propagate
at any velocity (the slope of the space-time trajectories). Hence the propagation velocity is
no longer a well-defined quantity, while the recurrence time still is, as in the case of solitary
Type-A bands under strain control. Owing to that well-defined recurrence time, however,
one observes a regular stair-case type stress-strain curve, which must not be confused with
solitary wave propagation at constant speed. This has also been confirmed experimentally
by laser-extensometric monitoring of stress-controlled tensile tests on a Cu-Al alloy [3].
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