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On the kinematics of Portevin–Le Chatelier
deformation bands: theoretical modeling

and numerical results∗

Peter ḦAHNER1, Egidio RIZZI2

Abstract

A model is presented for the description of the Portevin–Le Chatelier (PLC) ef-
fect, namely the oscillatory plastic yielding that may be observed in metal alloy
specimens for certain ranges of the applied stress/strain rates and testing temper-
atures. The phenomenological model is based on the underlying microstructural
Dynamic Strain Ageing (DSA), i.e. the dynamic interaction between mobile dislo-
cations and diffusing solute atoms. Both time and space couplings are taken into
account. Focus is made on Type A PLC instabilities, that is single PLC bands that
nucleate and propagate smoothly throughout the tensile specimen as solitary plas-
tic waves. The kinematics of these PLC bands is first studied analytically, based
on some simplifying assumptions, and then validated numerically by a Finite Dif-
ferences integration of the model equations. The characteristics of the PLC bands,
that is band speed, band width and band plastic strain are filtered out automatically
from the space–time fields of plastic activity. The band parameters exhibit very
good matching with the theoretical results and order-of-magnitude agreement with
the experimental observation of the PLC effect.
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1 Introduction

Plastic flow of metallic alloys subjected to various deformation conditions, including uniax-

ial tension/compression, torsion and multi-axial sheet forming, may display oscillatory plastic

yielding under certain ranges of the applied loading rates and testing temperatures. When the

instability occurs, if the test is run under constant applied stress rate (‘soft’ device) the typical

stress–strain curve displays a wavy profile (staircase type), with bursts of plastic strain at almost

constant stress, while if the test is driven under constant applied strain rate (‘hard’ device), the

stress trace results serrated (saw-tooth type), with sudden stress drops at almost constant strain.

This irregular plastic flow is a form of material instability and associated loss of homo-

geneous deformation (strain localization), which is normally referred to as ‘serrated flow’ or

‘repetitive yielding’, sometimes as Savart–Masson or, more commonly in the physical metal-

lurgy community, as Portevin–Le Chatelier (PLC) effect (Portevin and Le Chatelier, 1923). The

literature on the PLC effect is vast. Comprehensive reviews on the subject comprising detailed

referencing on the various aspects of the PLC effect, including experiments and modeling, are

those provided e.g. by Bell (1973), p. 41-44 and 649-666, which presents a chronological out-

line of the earlier developments on the subject starting from those of Savart and Masson, by

Neuḧauser (1990), by the Viewpoint Set 21 ofScripta Metallurgica et Materialia, Vol. 29

(1993), see Estrin et al. (1993), and, more recently, by Estrin and Kubin (1995) and Zaiser and

Hähner (1997).

The PLC effect is basically understood as a material property since it is primary known to

arise from the underlying microstructural processes governing the plastic deformation kinetics

of metallic solid solutions, namely the dynamic interaction between gliding dislocations and

mobile solute atoms. These local phenomena are referred to as Dynamic Strain Ageing (DSA)

(see e.g. Cottrell, 1953; Baird, 1973; van den Beukel, 1975) and may induce a macroscopic

negative Strain Rate Sensitivity (SRS) of the flow stress, that is a decrease of the flow stress at

an increasing applied strain rate. This ultimately results macroscopically in plastic oscillations

of the stress trace and in localized plastic straining.

As opposed to inhomogeneous plastic yield phenomena due tostrain-softening (L̈uders

bands), that may be handled by appropriate pre-deformation, the unstable plastic flow due to
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strain-rate-softening (PLC bands)does not occur only at once, but is rather repetitive. Then,

the PLC range needs to be avoided in the industrial processes (e.g. sheet forming in automo-

tive industry) to prevent the appearance of surface markings and waviness caused by the plastic

oscillations.

Different types of PLC instabilities can be observed depending on the spatio-temporal or-

ganization of the deformation bands. Type C bands appear almost at random in the sample

without propagating (stochastic nucleation), Type B bands exhibit an oscillatory or intermittent

propagation along the tensile axis (stop-and-go), and Type A bands, finally, propagate continu-

ously and smoothly (solitary plastic waves). This classification was mainly based on the types

of serrations displayed by the stress–strain curves (Cuddy and Leslie, 1972; Pink and Grinberg,

1981; McCormick, 1986; Chihab et al., 1987; McCormick et al., 1993; Kalk and Schwink,

1995): Type A bands give rise to regular equi-distanced stress drops, Type C bands induce an

heavily serrated flow with fine low amplitude oscillations, and Type B bands display additional

oscillations as those of Type C superimposed on those characteristic of pure Type A. How-

ever, this phenomenological classification cannot be considered fully conclusive, since similar

stress–strain serrations may arise from very different space–time patterns of strain localization.

This has been concluded from detailed laser-extensometric observations at the scale where the

inhomogeneous deformation takes place (Ziegenbein, 2000; Hähner et al., 2002), as well as

from the numerical modeling of the present PLC model (Rizzi and Hähner, 2002).

The existing models of the PLC instability, e.g. Penning (1972), Kubin and Estrin (1985),

McCormick (1988), Zbib and Aifantis (1988), Estrin and Kubin (1991), Mesarovic (1995),

Hähner (1993), (1996), cannot be considered to be fully satisfactory because they lack in prac-

tice a proper physical identification of the critical material parameters associated to the PLC

instability and, mainly, they fail to predict correctly the kinematics characteristics of the PLC

bands, namely the band propagation speed, the band width and the plastic strain carried by the

band. Previous studies specifically devoted to investigate the kinematics of PLC bands have

been reported by Chihab et al. (1987), Zbib and Aifantis (1988), McCormick et al. (1993),

Hähner (1993), Jeanclaude and Fressengeas (1993), Dablij and Zeghloul (1997). However,

there are still open debated aspects, as for example that of the (increasing or decreasing) trend

experienced by the band speed at increasing applied stress or strain rate (see e.g. McCormick et
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al., 1993; Estrin and Kubin, 1995, p. 47, and Zaiser and Hähner, 1997, p. 316). Here the band

speed is found to grow (non-linearly) with the increase of the applied strain rate.

The characterization of the band parameters is the main concern of the present paper, which

aims at a consistent determination of the band characteristics on both theoretical and numerical

grounds. A model of the PLC effect is presented, which attempts to bridge the microstructural

aspects of DSA with the macroscopic mechanical behaviour associated with the PLC instabil-

ity. The model is coupled in time and (one-dimensional) space and introduces in the evolution

equations two intrinsic time scales corresponding to the two competing processes of the DSA

kinetics (dislocation pinning by the solute clouds and thermal activation of the arrested disloca-

tions), and a characteristic length scale through a diffusion-like space coupling term with spatial

second-order gradient (accounting for the long-range dislocations interactions).

The model has been formalized and described in details in Hähner et al. (2002) and in Rizzi

and Ḧahner (2002). The main constitutive equations and analytical derivations of the PLC

model are here summarized first (Section 2). Approximate analytical solutions are also recalled

for the boundaries of the PLC range and for the strain localization characteristics defining the

kinematics of the PLC deformation bands. Then, these characteristics are validated by a sys-

tematic numerical analysis of Type A PLC bands for tensile tests simulated at different constant

and variable applied cross-head velocities (Section 3). A parallel numerical investigation on

the different types of spatio-temporal organization of the PLC bands is provided in Rizzi and

Hähner (2002). Such simulations display very rich qualitative patterns of strain localization and

corresponding phenomenological stress–strain responses. Overall, these numerical results are

in full qualitative agreement with the experimental observation of the PLC effect in metal alloys.

A first quantitative matching of the present model with the experimental results is attempted in

Hähner et al. (2002) for a Cu-Al alloy.

2 Theoretical modeling

2.1 The model equations

The present model of the PLC effect is based on the two following evolution equations for the

plasticstrain rateε,t and for the rate(∆G),t of the additional activation enthalpy∆G linked to
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DSA (see Ḧahner et al., 2002; Rizzi and Hähner, 2002):





ε,t = ν Ω exp

[
−G0 + ∆G

kT
+

σext − σint

S0

]
, (1)

(∆G),t = D ∆G,xx + η (∆G∞ −∆G)− ε,t

Ω
∆G . (2)

The first Arrhenius-type equation (1) interprets plastic flow as a thermally-activated process

of dislocation motion.Ω and ν are physical parameters representing the elementary plastic

strain corresponding to the activation of all mobile dislocations and the attempt frequency of

thermal activation;k=1.38·10−23 J/K is the Boltzmann constant andT the (constant) absolute

temperature;G=G0+∆G is the Gibbs free activation enthalpy, withG0 the constant activation

enthalpy in the absence of DSA;σeff(ε, ε,t, ∆G)=σext(ε, ε,t, ∆G)−σint(ε) is the effective stress

available to propel dislocation motion, namely the difference between the externally applied

stressσext (flow stress) and the internal stressσint (back stress) resulting from other defects and

linked to plastic strain hardening (quasi-linear strain hardening is assumed,σint,t=h ε,t, with

h a constant piece-wise linear hardening parameter);S0 is the instantaneousSRS of the flow

stress, an intrinsically-positive parameter, which is generally distinct from theasymptoticSRS

S∞ (see e.g. Zaiser and Hähner, 1997),

S0 =
∂ σext

∂ ln ε,t

∣∣∣∣
ε, ∆G

; S∞ =
∂ σext

∂ ln ε,t

∣∣∣∣
ε

= S0 +
∂ σext

∂∆G

∣∣∣∣
ε

d∆G

d ln ε,t

= S0

(
1 +

1

k T

d∆G

d ln ε,t

)
, (3)

which represents the SRS of the flow stress for DSA processes that have relaxed to a new steady

state. Taking the derivatived∆G/d ln ε,t for ∆G=∆Gs=∆G∞/(1 + ε,t/(ηΩ)), namely the

steady state value of the additional activation enthalpy corresponding to(∆G),t=0 in eqn (2),

the asymptotic SRS of the model is evaluated as

S∞ = S0


1− ∆G∞

k T

ε,t/(ηΩ)(
1 + ε,t/(ηΩ)

)2


 , (4)

and may become negative in the PLC range, provided that∆G∞/(k T )>4.

The three terms in the evolution equation (2) interpret respectively the following phenom-

ena: long-range dislocation interaction (diffusion-like coupling based on a spatial second-order

gradient, e.g. Aifantis, 1984), ageing linked to dislocations pinning by the solute atoms, dis-

locations unpinning by thermal activation and consequent release of the solute cloud.D is the
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diffusion coefficient, with dimensions of[L]2/[t]; ∆G∞ is the maximum value of the additional

activation enthalpy that can be induced by DSA;η−1 is the intrinsic time scale of the ageing

process, which competes with the time scaleΩ/ε,t linked to thermal activation.

To account for a spatially-extended system, the constitutive equations (1)-(2) must be com-

plemented by the‘machine equation’

σext,t

Eeff

=
v

l
− 1

l

∫ l

0

ε,t dx , (5)

which expresses the additive composition of elastic and plastic deformation rates to comply with

the imposed cross-head velocityv. HereEeff=E Em/(E + Em) is the effective elastic stiffness

of the system composed of the specimen (Young’s modulusE) and the tensile machine (elastic

modulusEm), andl is the parallel length of the specimen.

2.2 Qualitative response of the system

To simplify the model equations and reduce the number of independent parameters the PLC

model (1)-(2) is better expressed in terms of non-dimensional variables:

{
ḟ = σ̇f − θ exp[−g] f 2 , (6)

ġ = g′′ + g∞ − g − f exp[−g] g . (7)

Heref plays the role of a non-dimensional driving force linked to the effective stressσeff , while

g is the non-dimensional additional activation enthalpy:

f ≡ f0 exp

[
σeff

S0

]
, f0 ≡ ν

η
exp

[
−G0

kT

]
; g ≡ ∆G

k T
. (8)

Accordingly, alsog0≡G0/(k T ), gs≡∆Gs/(k T ) andg∞≡∆G∞/(k T ). The overscored dot de-

notes the time derivative with respect to the non-dimensional timet̃=ηt, namely ˙( )=( ),t/η.

The dimensionless stress rateσ̇ and hardening coefficientθ are scaled parameters which re-

late to the actual stress rateσext,t and the strain hardening coefficienth as σ̇=σext,t/(ηS0),

θ=Ωh/S0. The primes ing′′ denote instead differentiation with respect to the non-dimensional

spatial coordinatẽx=
√

η/D x, where
√

D/η is a characteristic length linked to diffusion.

The non-dimensional hardening coefficientθ is assumed to be small:θ¿1 (‘weak hard-

ening’). In such case, the variablef can be considered as the ‘slow’ variable of the model,

whereasg represents its ‘fast’ variable. The qualitative response of the constitutive model and
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associated PLC oscillations is based on a‘limit cycle’ behavior: the system orbits in the(g, f)

plane around the (inaccessible)‘working point’ (fs, gs)

fs =
σ̇

θ
exp gs , gs =

g∞
1 + σ̇/θ

, (9)

that represents the steady state values of both variablesf andg (ḟ=ġ=0), and must be taken on

the unstable ascending branch of theġ=0 characteristic (Fig. 1).
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Figure 1:Representation of the limit cycle in the(g, f) plane forg∞=6 andσ̇/θ= 1: gs=3,fs=e3=20.08,
g1=1.27, g2=4.73, f1=13.26, f2=30.42, gmin=0.24, gmax=5.76. The ‘working point’ (gs,fs) is taken
on the unstable ascending branch of theġ=0 characteristic. The system orbit is divided into four phases
(see also Fig. 2): I) dislocations unpinning from solute clouds, II) dislocations glide, III) dislocations
recapture and pinning, IV) dislocations arrested.

The orbit on the limit cycle is divided into four phases. During phases I and III, the fast

variableg oscillates rapidly but continuously at almost constantf and reaches respectively the

minimum and maximum values ofg, that isgmin, gmax. Otherwise the system stays very close

to the ġ=0 characteristic (phases II and IV), consistently with an adiabatic approximation of

the ageing kinetics. To a first estimation, the amplitude of the limit cycle can be based on

the ‘switching curve approximation’, that is by assuming that phases I and III take place with
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discontinuous jumps ofg (at constantf ) from the extrema of one stable branch to the other

stable branch of thėg=0 characteristic. The valuesfmin andfmax can then be approximately

estimated byf1 andf2, andgmin, gmax are read accordingly on thėg=0 characteristic. For

g∞=6, namely the value assumed in subsequent computations, one getsg1=1.27, g2=4.73,

f1=13.26, f2=30.42, whilegmin, gmax can be determined numerically asgmin=0.24, gmax=5.76.

The four phases of each orbit on the limit cycle have a corresponding physical meaning in

the spatially-correlated response of the present material model. Each orbit on the limit cycle

corresponds to the nucleation and subsequent propagation of a single PLC band travelling at

constant speedcb as a plastic wave along the specimen axis. Since for a solitary wave time and

space derivatives are related byf,t=−cb f,x andg,t=−cb g,x, the spatial profiles of the model

variablesf andg can be read-off from the time profiles by abscissa reversal. Fig. 2 sketches

qualitatively the expected spatial profiles of the non-dimensional variablesf andg, and of the

plastic strainε and plastic strain rateε,t corresponding to a plastic strain burst travelling at

speedcb. The four marked phases of the DSA kinetics correspond to those of the limit cycle

and represent the following physical phenomena: I) unpinning of dislocations in front of the

band; II) intermediate hardening with dislocation glide; III) recapturing of dislocations by the

solute clouds in the wake of the band; IV) stress built-up during dislocation arrest preceding a

new nucleation phase.

2.3 Negative SRS and PLC ranges

As already commented, the ‘working point’ of the unstable system must be taken on the (in-

accessible) ascending branch of theġ=0 characteristic. Provided thatg∞>4, such curve is

‘N-shaped’(Penning, 1972) and the asymptotic SRS of the model, eqn (4), becomes negative

for the interval of the plastic strain rates leading to a negative asymptotic SRS:

g∞ − 2−
√

g∞(g∞ − 4)

2
<

ε,t

ηΩ
<

g∞ − 2 +
√

g∞(g∞ − 4)

2
. (10)

Forg∞=6, the bounds (10) for a negative asymptotic SRS become (0.268, 3.732).

A first estimation of the PLC range can be made instead by a linear stability analysis signal-

ing the onset of diverging perturbations around the steady state (‘Hopf bifurcation’). Provided

thatg∞>2+θ+2
√

1+θ≈4+2θ, the onset of this bifurcation leads to theinterval of plastic strain
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Figure 2:Plastic strain rate burst carried by a solitary plastic wave propagating in space (alongx coor-
dinate) with speedcb: schematic representation of the spatial profiles of the non-dimensional variables
f andg and of the corresponding plastic strainε and plastic strain rateε,t. The four marked phases
correspond to (see also Fig. 1): I) dislocations unpinning from solute clouds, II) dislocations glide, III)
dislocations recapture and pinning, IV) dislocations arrested. Variations off andε mainly take place
during phase II, while sharp variations ofg andε,t occur during phases I and III at almost constantf and
ε. The corresponding temporal profiles result from abscissa reversal.
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rates constituting the unstable PLC range:

g∞ − 2− θ −
√

(g∞ − θ)2 − 4g∞
2(1 + θ)

<
ε,t

η Ω
<

g∞ − 2− θ +
√

(g∞ − θ)2 − 4g∞
2(1 + θ)

. (11)

The PLC range (11) is somehow narrower than that of the negative asymptotic SRS (10)

due to the presence of theθ terms in eqn (11): plastic instability develops only for some finite

negative value ofS∞. For example, forg∞=6 andθ=0.01 the PLC bounds (11) become (0.269,

3.682). However, for weak hardening the two ranges almost coincide, sinceθ¿1. On the other

hand, the PLC range is expected to be broader than that estimated by linear perturbation, since

the ‘Hopf bifurcation’ is ‘subcritical’, in the sense that the presence of noise has a destabilizing

effect on the onset of the PLC instability. Indeed, while forg∞=6 andθ→0 eqn (11) provides

theplasticstrain rate range (0.268, 3.732)· 10−6 s−1 for the PLC effect, systematic numerical

simulations scanning a series of applied cross-head velocities (Rizzi and Hähner, 2002) showed

the PLC instability fortotal applied strain rates belonging to the interval (0.20, 5.70)· 10−6 s−1

(consider here that the difference attributable to the elastic strain rate is practically negligible).

2.4 Band kinematics characteristics

To estimate the kinematics characteristics of solitary plastic waves (Type A PLC bands), the two

following simplifying assumptions can be made: (a) the band plastic strain∆εb can be consid-

ered to accommodate virtually the whole applied strain ratev/l. Then, relationsv=∆εb cb and

v=εb,t wb link the applied cross-head velocityv to the propagation speedcb, the local plastic

strain rate in the bandεb,t and the band widthwb. This means that out of the three band char-

acteristicscb, wb, ∆εb, only two are independent; (b) the dimensionless stress rate termσ̇ in

eqn (6) is appreciable only during the quasi-elastic deformation preceding the nucleation of a

new band, while it can be neglected during the propagation of a fully developed band. Recall-

ing that solitary wave solutions obeẏf=−c f ′ and ġ=−c g′, wherec=cb/
√

ηD now denotes

the non-dimensional band speed, the set of band parameters can be derived for the limiting case

θ¿1. The derivation is reported in Ḧahner et al. (2002) and in Rizzi and Hähner (2002) and is

repeated below for the sake of completeness.

Consider a uniformly propagating PLC band as described by the dimensionless rate equa-
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tions (6), (7). Within the hypotheses above, eqns (6), (7) give

cf ′ − θ exp[−g] f 2 = 0 , (12)

g′′ + cg′ − f exp[−g] g + g∞ − g = 0 . (13)

To calculatec, eqn (13) is multiplied byg′ and integrated along the tensile axis. Since the spatial

profile is strongly localized, the integral over the specimen lengthl can be extended to±∞. As

g′ vanishes at±∞, this yields:

c =

∫ +∞

−∞
fgg′ exp[−g] dx

∫ +∞

−∞
(g′)2 dx

=
I1

I2

. (14)

Consider first the numeratorI1. Upon integrating by parts and insertingf ′ from eqn (12), one

gets

I1 =
θ

c

∫ +∞

−∞
(1 + g)(f exp[−g])2 dx . (15)

To evaluate this integral one notes thatf exp[−g]=ε,t/(ηΩ) is localized within the band width,

with plastic strain rate in the band ruled bygmin (Fig. 2). ThenI1 is approximated by:

I1 ≈ θ

c
(1 + gmin)

(
εb,t

ηΩ

)2

w , (16)

wherew=
√

η/D wb is the dimensionless band width. To evaluate the denominatorI2, accord-

ing to the ‘switching-curve approximation’, one may decompose the deformation band profile

into three substages,w=wI+wII+wIII (Fig. 2). Asg′ is negligible in Stage II (whereg≈gmin),

the denominator of eqn (14) can be approximated by

I2 ≈ (gmax − gmin)
2

(
1

wI

+
1

wIII

)
≈ 2(gmax − gmin)

2 , (17)

where unity widths (that is the characteristic length defined by the diffusion-like coupling) have

been assumed for substages I and III,wI≈wIII≈1, for self-consistency. To estimatewII, one may

use the adiabatic approximationg′≈g′′≈0 in eqn (13),f exp[−g]≈g∞/g − 1≈g∞/gmin−1, and

integrate eqn (12) to arrive atc ln[fmax/fmin]=θ(g∞/gmin−1)wII. According to the definition

of f , eqn (8), by neglecting again the stress rate term, one gets

∆εb =
Ω

θ
ln

[
fmax

fmin

]
, (18)
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and therefore

wII =
gmin

g∞ − gmin

v

Ω
√

ηD
. (19)

Note that eqn (18) relates the band plastic strain∆εb to the amplitude of the limit cycle ruled

by fmax, fmin. Also, note that in eqn (19), the actual value of the hardening coefficientθ has

dropped out. Finally, upon combining eqns (16)-(19) and returning to dimensional units, the

following set of band parameters is obtained:





cb =

(
D

η

)1/4
√

(1 + gmin)/2

gmax − gmin

√
θ

v

Ω
√

wb

, (20)

wb = 2

√
D

η
+

gmin

g∞ − gmin

v

ηΩ
, (21)

∆εb =
v

cb

=
gmax − gmin√
(1 + gmin)/2

Ω(
D

η

)1/4

√
wb√
θ

. (22)

Notice that the band speedcb depends non-linearly on the applied cross-head velocityv,

through eqns (20) and (21). Moreover, eqn (20) predicts a square root dependence ofcb on

the non-dimensional hardening coefficientθ. The faster the material hardens, the higher is the

band speed, while conversely the lower is the plastic strain carried by the band, eqn (22). The

characteristic length
√

D/η (up to a factor 2) represents the intrinsic length introduced into

the model by the diffusion term and prevents the band widthwb, eqn (21), to tend to zero as

v→0. The second term ofwb, linear inv, is bounded from above only by the upper boundary

value corresponding to that of the cross-head velocity in the PLC range (see also comments

in the Conclusions in connection with geometrical factors linked to the specimen size). The

dependence of the three band parameters withθ andv, specifically the trend thatcb

√
wb/θ

scales linearly withv, and the assumptions made in the theory, e.g. thatcb∆εb≈v, is now going

to be validated numerically in the next section by systematic numerical simulations of Type A

band propagation in the PLC range.
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3 Numerical modeling

A throughout investigation of the band characteristics of Type A PLC bands is now performed.

The adopted model parameters are the following:η=0.1 s−1, Ω=10−5, S0=1 MPa,E=Em=105

MPa (Eeff=0.5 105 MPa),f(0)=f0=10−13 (initial yield limit at around 100/3 MPa),g(0)=g∞=6

(infinitely-aged material before testing),D=10−7 m2/s orD=4 ·10−7 m2/s, l=0.1 m. The strain

hardening coefficient is either taken constant,θ=θ0=Ωh0/S0 (linear strain hardening), with

h0 assuming values between 200 and 1000 MPa, or linearly dependent with the space-average

plastic strainεav (parabolic strain hardening),θ=θ0−2 · 10−6 εav, where hereθ0=0.01 is the

initial non-dimensional hardening coefficient corresponding toh0=1000 MPa.

The governing equations are discretized both in time and in space and solved through a

Finite Differences integration scheme on the space coordinate at each discrete time instant.

A non-dimensional time step∆t̃=0.1 and a density of 100 spatial segments (‘blocks’) along

the specimen length have been considered. Fixed boundary conditions have been assumed,

namely,ḟ=ġ=0 at the specimen extremities for each discrete time instant. To trigger the PLC

instability, the initial conditionf(0) is perturbed at the second block by a random multiplicative

factor varying between 1 and 30, which alters locally the yield strength up to a maximum of

about 10%.

To allow a simultaneous representation of both global (stress-time curves) and local re-

sponses (space–time fields of the plastic strain rate), the band propagation is traced graphically

in the space–time plane by using two-dimensional localization maps that mark the successive

space–time locations undergoing a local maximum of the plastic strain rate. The band data

are filtered out automatically from the space–time plastic fields ofε,t andε: the band speed

is evaluated from the slopes of the band traces in the space–time localization maps, the band

width is estimated from the extension (either in space or in time) of the base of the plastic strain

rate spikes, and the band plastic strain is evaluated from the steps of the corresponding plastic

strain–time profiles.
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3.1 Uniaxial tension tests at constant applied strain rates in the PLC range

We present first the results of a series of simulated tensile tests at constant applied cross-head

velocities in the PLC range with imposed parabolic strain hardening. Typically, the Type A PLC

bands display a very smooth propagation mode with reflection at the specimen boundaries and

result in a corresponding wavy staircase profile of the flow stress trace. Such band propagation

with reflection pattern is sometimes denoted as Type A2 (Kalk and Schwink, 1995) or Type D

(McCormick et al., 1993), while more classical Type A bands, sometimes referred to as Type

A1 (Kalk and Schwink, 1995), always nucleate at the same end of the specimen and propagate

in the same direction, with a corresponding serrated profile of the flow stress.

3.1.1 Uniaxial tension test at constant cross-head velocityv=0.50 · 10−7 m/s in the PLC
range

The global and local responses of the system are first shown in Figs. 3-4: Fig. 3a reports the

space–time localization map, together with the relevant imposed hardening–time and resulting

post-yield stress–time curve; Fig. 3b depicts the stress–strain curve and again the imposed hard-

ening coefficient of parabolic plastic strain hardening. Fig. 3 shows Type A2 band propagation

and the associated staircase stress trace with horizontal steps increasing in time and strain, and

vertical stress steps of decreasing magnitude as hardening decreases. Fig. 4 represents the time

evolution of the plastic strain rate and plastic strain as recorded at one half the specimen length.

Fig. 4a shows the response during the entire loading history, occurring with repeated bursts of

plastic activity at the time instants in which the PLC band reaches the central gauge and with

corresponding staircase steps of the plastic strain. Notice the smooth time profiles, that can

be better appreciated in Fig. 4b, where a zoom window near the end of the loading history is

represented.

The characteristics of the PLC deformation bands are reported in Fig. 5 as a function of

the hardening coefficientθ: Fig. 5a depicts the band maximum plastic strain rate and the band

plastic strain (compare also to Fig. 4); Fig. 5b represents the band speed and the band width.

Notice that the band width is practically constant, in accordance with the prediction from the

theory, eqn (21), for a test driven under constant applied strain rate. Notice also the quite regular

variations of band speed and band plastic strain as captured by the present model and by the
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numerical procedures developed to filter out automatically the band kinematics data. These

first trends of the dependencies of the band parameters are already in good agreement with the

approximate theoretical estimations (20)-(22). The square root dependence of the band speed

with hardening is better identified next.

3.1.2 Comparison of uniaxial tension tests with different cross-head velocitiesv=0.30 ·
10−7÷ 1.20· 10−7 m/s in the PLC range

To validate the square root dependence of the band speed with the hardening coefficient, further

numerical tests have been run with different cross-head velocities in the PLC range, namely

v=(0.30, 0.50, 0.60, 0.80, 1.00, 1.20)· 10−7 m/s. Fig. 6 reports the recorded band speeds as a

function of the imposed hardening coefficientθ; Fig. 6a shows a standard double-linear plot,

while Fig. 6b represents the dependence in a double-log plot. The range of variation of the band

speed is more reduced for the slowest applied strain rate (v=0.30· 10−7 m/s) since Type A PLC

bands appear only towards the end of the loading history, while Type C bursts prevail in the

first nucleation phase (see also numerical results presented in Rizzi and Hähner, 2002). As a

difference to all other cases, for the highest applied strain rate (v=1.20· 10−7 m/s) a propagation

pattern with renucleation always at the same end of the specimen and propagation towards the

other end was recorded (Type A1) instead of the reflection pattern (Type A2). This does not

basically affect the estimation of the band parameters, while rather changes the stress–time

profile, which is observed to be serrated at regular intervals (trace really typical of Type A PLC

bands), rather than of staircase type.

Fittings of thecb dependence withθ are better evaluated linearly in the double-log plot of

Fig. 6b. The results are in very good agreement with the square root dependence predicted

by the theory, eqn (20), since the range of theθ dependence exponent is found to be between

0.49 and 0.56. Higher scatter from the 0.5 slope is observed towards the higher applied strain

rates, especially for the highest value, which gave rise to the non-reflective localization pattern

as mentioned above. On the basis of these numerical tests it can be concluded that the band

speed predicted by the present PLC model scales approximately well with the square root of the

hardening coefficient, as estimated by theory.
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Figure 3: Uniaxial tension test simulated at constant applied cross-head velocity in the PLC range
(0.20÷5.70)· 10−7 m/s,v=0.50· 10−7 m/s (η=0.1 s−1, S0=1 MPa,Ω=10−5): (a) space–time localization
map (left axis, scatter plot with circles), hardening–time (right axis, left ticks, dotted line) and stress–
time curve (right axis, right ticks, continuous line); (b) stress–strain curve (left axis, continuous line) and
imposed hardening coefficient of parabolic plastic strain hardening vs. strain (right axis, dotted line).
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Figure 4: Uniaxial tension test simulated at constant applied cross-head velocity in the PLC range
(0.20÷5.70)· 10−7 m/s,v=0.50· 10−7 m/s (η=0.1 s−1, Ω=10−5). Plastic strain rate (left axis, continuous
line) and plastic strain (right axis, dotted line) vs. time at one half the specimen length; (a) full response
and (b) zoom at the end of the loading history showing two plastic strain rate bursts and the corresponding
plastic strain steps.
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Figure 5: Uniaxial tension test simulated at constant applied cross-head velocity in the PLC range
(0.20÷5.70) · 10−7 m/s,v=0.50 · 10−7 m/s (η=0.1 s−1, S0=1 MPa,Ω=10−5). Band characteristics as
a function of hardening coefficientθ: (a) band max. plastic strain rateεmax

b,t (left axis, solid marks) and
band plastic strain∆εb (right axis, open marks); (b) band speedcb (left axis, solid marks) and band
width wb (right axis, open marks).
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Figure 6: Uniaxial tension test simulated at constant applied cross-head velocity in the PLC range
(0.20÷5.70) · 10−7 m/s, v=(0.30, 0.50, 0.60, 0.80, 1.00, 1.20)· 10−7 m/s (η=0.1 s−1, S0=1 MPa,
Ω=10−5). Band speedcb as a function of hardening coefficientθ: (a) double-linear plot; (b) double-
log plot with linear fittings.
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3.2 Uniaxial tension tests with linear ramp of the applied strain rate in
the PLC range

To investigate further the dependence of the band parameters with the applied cross-head veloc-

ity v, a series of simulated tensile tests run at linearly-increasing applied cross-head velocity is

performed. The hardening coefficients are taken here constant (linear hardening). The imposed

cross-head velocity varies betweenv0=0.30· 10−7 m/s andv=3.00· 10−7 m/s, according to the

following linear ramp of the applied strain rateε̇=v/l: ε̇=ε̇0+2.7·10−10 t̃, wheret̃ is the non-

dimensional time. The applied strain rate ramp can be seen in Fig. 7, which is presented next.

3.2.1 Uniaxial tension tests at constant hardening coefficienth=200 MPa

Fig. 7a presents the space–time localization map, together with the relevant post-yield stress–

time curve and the linear ramp of the applied strain rate; Fig. 7b shows the flow stress and

the applied strain rate vs. strain. The typical pattern of the stress–strain curve consistent with

reflective propagation shifts from staircase to wavy type, with horizontal steps of magnitude

decreasing in time and increasing in strain.

Propagation is once again very smooth, which allows for a convenient filtering of the band

parameters. The band characteristics are displayed in Fig. 8 as a function of the applied strain

rateε̇=v/l. Fig. 8a represents the band width together with a linear fit that has to be compared

with the approximate analytical prediction (21). Fig. 8b depicts both the band speed and the

band plastic strain. The scatter plot of the band speed is also fitted with the non-linear expression

predicted by theory, eqn (20), where the two parameters fixing the linear dependence of the band

width are taken from the previous fit in Fig. 8a. This fitting renders a power exponent around

−0.52 in very good agreement with the inverse square root dependence with−0.5 power. The

fitted parameters apply also to the plot of the band plastic strain through eqn (22).

The influence of the diffusion coefficientD on the band characteristics is studied next

(Fig. 9). Two different runs withD=1· 10−7 m2/s and 4· 10−7 m2/s are compared. Fig. 9a

depicts the band width vs. the applied strain rateε̇=v/l. According to eqn (21) the influence

of D could be read through the offsets difference of the linear fittings. SinceD is four times

higher, the offset for the higher value ofD should be twice the offset for the lower value ofD.
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The ratio between the two offsets of about 7.11/3.63=1.96 is quite in good agreement with such

prediction. The slight difference in the slopes of the two fittings may be explained in terms of

the increase ofgmin for higherD. Fig. 9b represents the band speed times the square root of

the band width vs. the applied strain rateε̇=v/l. In this case the influence ofD should be read

through the different slopes of the linear fittings, which should differ by a factor of
√

2. The

ratio obtained from the plots, 2.47/1.62=1.52, is actually a bit higher. Such difference should

be also explained in terms of the increase ofgmin induced by the stronger spatial coupling.

3.2.2 Comparison of uniaxial tension tests with different constant hardening coefficients
h=100÷ 1000 MPa

A last series of numerical tests is performed for a full validation of the analytical prediction of

the band characteristics. Different runs with the linear ramp in the applied strain rate at different

constant strain hardening coefficientsh=100, 200, 300, 500, 1000 MPa have been carried out,

with results summarized in Figs. 10-13.

Fig. 10 reports the band width as a function of the applied strain rateε̇=v/l. All the data

collapse rather well on the linear fitting, in agreement with eqn (21). Slight deviations are

recorded only for the lowest and highest strain hardening coefficients. Fig. 11 shows the differ-

ent non-linear variations of the band speed with the applied strain rate at changing hardening

coefficient. This plot clearly shows qualitatively the increase of the band speed with both the

applied strain rate and the hardening coefficient. The regular variations are quite remarkable,

except for some deviations for the lowest hardening coefficient. Fig. 12 shows the variation of

the plastic strain carried by the band, with similar increase trend with increasing applied strain

rate, but with converse decreasing trend at increasing hardening coefficient.

In sum, as the material is plastically softer, the PLC band becomes slower but carries a larger

plastic strain. The variations are very regular, except once again for the case with smallest

hardening coefficient. This run experienced indeed some deviations from the regular pattern

with smooth Type A2 propagation with boundary reflection, similarly to what that starts to

be seen near the specimen boundaries forh=200 MPa in the localization map of Fig. 7. The

qualitative trends of band speed increase with the applied cross-head velocity are in agreement

with the findings in McCormick et al. (1993).
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Figure 7: Uniaxial tension test simulated at linearly increasing applied cross-head velocity,
v=(0.30÷3.00)· 10−7 m/s, and constant strain hardening,h=200 MPa (η=0.1 s−1, S0=1 MPa,Ω=10−5):
(a) space–time localization map (left axis, scatter plot with circles), applied strain rate–time (right axis,
left ticks, dotted line) and stress–time curve (right axis, right ticks, continuous line); (b) stress–strain
curve (left axis, continuous line) and applied strain rate vs. strain (right axis, dotted line).
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Figure 8: Uniaxial tension test simulated at linearly increasing applied cross-head velocity,
v=(0.30÷3.00) · 10−7 m/s, and constant strain hardening,h=200 MPa (η=0.1 s−1, Ω=10−5). Band
characteristics as a function of applied strain rateε̇=v/l: (a) band widthwb with linear fit; (b) band
speedcb (left axis, solid marks and fitted curve) and band plastic strain∆εb (right axis, open marks).
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Figure 9: Uniaxial tension test simulated at linearly increasing applied cross-head velocity,
v=(0.30÷3.00) · 10−7 m/s, and constant strain hardening,h=200 MPa (η=0.1 s−1, Ω=10−5). Influ-
ence of the diffusion coefficientD (see eqns (20), (21)): band characteristics vs. applied strain rate
ε̇=v/l for the two valuesD=(1, 4)·10−7 m2/s: (a) band widthwb; (b) band speedcb times square root
of band widthwb. The influence ofD should be read on the linear fittings in (a) by the offsets difference,
in (b) by the slopes difference.
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Finally, Fig. 13 summarizes the numerical results for a better direct comparison with the

analytical predictions from the theory. In Fig. 13a the quantitycb

√
wb/θ is plotted, which,

according to eqn (20), should scale on the same linear relation withv for all hardening coeffi-

cients. The numerical results are in very good agreement with the theoretical prediction. This

adds merit to the theoretical derivation since the scaling laws as derived here were not certainly

easy to be foreseen a priori. A slightly more dispersed accumulation of markers is recorded

for the quantitycb ∆εb (Fig. 13b), that should basically render the applied cross-head velocity

v. Actually, the only set which shows a slight deviation is that of the lowest hardening coef-

ficient, since, as already commented, the corresponding profile of∆εb is not as regular as the

other ones. However, a good linear dependence of the whole set of points is recorded with very

satisfactory matching of the fitted slope. Notice that the small offsets apparent from the linear

fittings are due to the elastic contributions, neglected in the theory. For example, the negative

offset that can be read in Fig. 13b is consistent with the contribution of strain rate due to elastic

effects that subtract from the total strain rate to give the strain rate relevant to the plastic activity.
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Figure 10: Uniaxial tension test simulated at linearly increasing applied cross-head velocity,
v=(0.30÷3.00) · 10−7 m/s, at different constant strain hardening coefficients:h=100, 200, 300, 500,
1000 MPa (η=0.1 s−1, Ω=10−5). Band widthwb as a function of applied strain rateε̇=v/l and linear fit.
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Figure 11: Uniaxial tension test simulated at linearly increasing applied cross-head velocity,
v=(0.30÷3.00) · 10−7 m/s, at different constant strain hardening coefficients:h=100, 200, 300, 500,
1000 MPa (η=0.1 s−1, Ω=10−5). Band speedcb as a function of applied strain rateε̇=v/l.
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Figure 12: Uniaxial tension test simulated at linearly increasing applied cross-head velocity,
v=(0.30÷3.00) · 10−7 m/s, at different constant strain hardening coefficients:h=100, 200, 300, 500,
1000 MPa (η=0.1 s−1, Ω=10−5). Band plastic strain∆εb as a function of applied strain rateε̇=v/l.
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Figure 13: Uniaxial tension test simulated at linearly increasing applied cross-head velocity,
v=(0.30÷3.00) · 10−7 m/s, at different constant strain hardening coefficients:h=100, 200, 300, 500,
1000 MPa (η=0.1 s−1, S0=1 MPa,Ω=10−5). Checks of linear dependencies with the applied strain rate
ε̇=v/l as predicted by the theory, eqns (20)-(22): (a)cb

√
wb/θ≈ v; (b) cb ∆εb≈ v. The small offsets

apparent from the linear fittings are due to the elastic contributions, neglected in the theory.
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4 Conclusions

The present model of the PLC effect attempts a realistic macroscopic description of the spatio-

temporal dynamics of PLC deformation bands associated with the kinetics of DSA. The pre-

dictive power of the present model has been explored analytically and numerically in a one-

dimensional context, with specific reference to the propagation of solitary plastic waves, i.e.

PLC bands of Type A. The numerical results are consistent with the analytical derivations and

self-support the hypotheses made in the approximate evaluation of the band characteristics.

Further numerical results on the different PLC band patterns, including those of Type B

and C and of multiple band propagation with ‘accordion modes’ (Type A’), are given in Rizzi

and Ḧahner (2002). Additional numerical investigations with random perturbations of the local

driving force at selected time steps and with sudden jumps in the applied strain rate are reported

in Rizzi and Ḧahner (2001). Analytical derivations for the kinematics of Type B and C PLC

bands are developed in Hähner et al. (2002). In the same paper, the order-of-magnitude agree-

ment of physical parameters with experimental observation as experienced here and in Rizzi

and Ḧahner (2002) is further supported by a first quantitative matching of the model prediction

capabilities with the experimental findings for a Cu-Al alloy. Further quantitative matchings

could be made possible once richer databases on the kinematics parameters will be available.

The influence of specimen geometry and size (e.g. specimen thickness) and the boundary

conditions on the determination of the band parameters is not considered here. These aspects

have a crucial impact on the overall kinematical behavior of the system. For example, the linear

grow of the band width at increasing applied cross-head velocity as modeled here is bounded

from above only by the value of band width corresponding to the upper applied strain rate in the

PLC range. So, there is no correlation between such high values of the estimated band width

and the specimen thickness, whereas the latter is known to bound the width of the PLC band.

This calls for a more general multi-dimensional formulation of the model equations and relevant

numerical analyses of the PLC effect, e.g. based on the Finite Elements Method. Such possible

prosecution of the present research should allow to check further the model response and finally

access the real prediction capabilities of this PLC model in simulating industrial applications

connected with significant mechanical and technological implications of the PLC effect.
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of Portevin-Le Cĥatelier deformation bands: theory, simulation and experiment.Physical
Review B, 65(13), Art. nr. 134109, 20 pages.



30 P. Hähner, E. Rizzi

[14] McCormick, P.G. (1986). Dynamic strain ageing.Transactions of the Indian Institute of
Metals, 39, 98-106.

[15] McCormick, P.G. (1988). Theory of flow localisation due to dynamic strain ageing.Acta
Metallurgica, 36(12), 3061-3067.

[16] McCormick, P.G., Venkadesan, S. and Ling, C.P. (1993). Propagative instabilities: an
experimental view.Scripta Metallurgica et Materialia, Viewpoint Set 21,29, 1159-1164.

[17] Mesarovic, S. DJ. (1995). Dynamic strain aging and plastic instabilities.J. of the
Mechanics and Physics of Solids, 43(5), 671-700.
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