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Abstract. In this paper, an analytical and numerical analysis on the collapse mode of circular 
masonry arches is presented. Specific reference is made to the so-called Couplet-Heyman problem of 
finding the minimum thickness necessary for equilibrium of a masonry arch subjected to its own 
weight (Heyman 1977). The note reports the results of an on-going research project at the University 
of Bergamo. First, analytical solutions are derived in the spirit of limit analysis, according to the 
classical three Heyman hypotheses and explicitly obtained in terms of the unknown angular position 
of the intrados hinge at the haunch, the minimum thickness to radius ratio and the non-dimensional 
horizontal thrust (Colasante 2007, Cocchetti et al. 2010). Results are then compared to Heyman 
solution. Though only the first of these three characteristics is perceptibly influenced in engineering 
terms, especially at increasing opening angle of the arch, the treatment settles an important 
conceptual difference on the use of the true line of thrust, along the line of Milankovitch work. 
Second, numerical simulations by the Discrete Element Method (DEM) in a Discontinuous 
Deformation Analysis (DDA) computational environment are provided, to further support the 
validity of the obtained solutions, with good overall matching of the obtained results (Rusconi 2008, 
Rizzi et al. 2010). 
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Introduction 

This paper addresses the classical problem of finding the minimum thickness required for equilibrium 
of a circular masonry arch, with general angle of embrace, subjected only to its own weight (Fig. 1). 
This issue is often referred-to as the Couplet-Heyman problem (see Heyman 1977 and the 
introductory review in Cocchetti et al. 2010, with references quoted therein). 

 

Figure 1: Sketch of a symmetric circular arch subjected only to its own weight, with all characteristic 
parameters and representation of its symmetric five-hinge rotational collapse mechanism. 

Given the value of the half-opening angle α of the arch, one attempts the determination of the 
following three basic parameters, which characterise the five-hinge rotational collapse mechanism: 
the angular position β of the haunch hinge B, measured e.g. from the vertical axis of symmetry at 
crown A; the minimum value η=t/r of the thickness to radius ratio still allowing for equilibrium; the 



corresponding non-dimensional horizontal thrust of the arch h=H/(wr), acting in such a limit state or, 
alternatively, the non-dimensional horizontal thrust ĥ=H/(γdr2)=η h normalised as to resort just to 
known material (specific weight γ) and geometrical (out-of-plane depth d and radius r) parameters 
(w=γ t d is the specific weight per unit length of geometrical centerline of the arch). 

For the solution of this problem, Heyman has provided, based on three classical behavioral 
assumptions (1−sliding failure does not occur; 2−masonry has an infinite compressive strength; 
3−masonry has no tensile strength), useful analytical formulas which can be applied to determine the 
above-mentioned characteristics. While attempting re-derivation of these outcomes, slightly different 
results were constantly obtained (Colasante 2007), which motivated a throughout investigation on the 
subject (Cocchetti et al. 2010). It turns-out that Heyman has obtained his formulas by imposing the 
tangency condition of the resultant thrust at the haunch intrados, while such tangency condition 
should more correctly re-stated in terms of the true line of thrust. This originated the “CCR solution”. 
Finally, the two solutions, which are derived by considering the self-weight as uniformly distributed 
along the geometrical centerline of the arch, were compared as well to Milankovitch solution, that 
accounts for the true location of the centers of gravity of each ideal section of the arch. 

The salient results of these derivations (Cocchetti et al. 2010) are presented here, by using a 
compact writing of the equations that originates all three (Heyman, CCR and Milankovitch) solutions. 
Furthermore, the trends experienced by the solutions were also confirmed by independent DEM 
calculations in DDA (Rusconi 2008, Rizzi et al. 2010), as briefly reported as well in the following. 

Analytical Derivation of Heyman, CCR and Milankovitch Solutions 

Reference is made here to cases with entirely-general half-angle of embrace, i.e. potentially 0 < α < π. 
Due to the symmetry of the problem with respect to the vertical axis at crown A, just one half AC of 
the arch can be considered, with only the horizontal thrust H acting on top at the crown extrados (and 
no shear force). At collapse, a hinge forms at the haunch intrados B (β < α), which divides the 
half-arch into two portions AB and BC. 

From the rotational equilibrium of the upper portion AB around inner hinge B and of the total 
half-arch AC around hinge C at the shoulder extrados, one obtains the following two equilibrium 
conditions in terms of the non-dimensional horizontal thrust h: 
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where δM is a flag that turns-out useful to account for either Milankovitch (δM =1) or CCR/Heyman 
(δM =0) solutions. It allows to consider the true self-weight distribution in Milankovitch solution. 

A third equation is thus needed to complement Eqs. (1)–(2) and to allow solving for the three 
unknowns β, η, h. According to Heyman indications, this relation should arise from the tangency 
condition of the line of thrust at the haunch intrados B. However, it appears that Heyman is rather 
stating this condition in terms of the resultant thrust force itself. Indeed, Heyman tangency condition 
reads (W1 being the weight of the upper portion AB of the arch): 
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Instead, by more correctly re-stating the tangency condition in terms of the true line of thrust, with 
eccentricity e=e(β ) from centerline (CCR and Milankovitch solutions), one has: 
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where δCCR is another flag allowing to shift from CCR/Milankovitch (δCCR =1) to Heyman (δCCR =0) 
solutions. This equation can be derived in a straight-forward manner by imposing the stationary 
condition h′(β )=0, as applied to h=h1(β ) in Eq. (1), which is equivalent to the true condition e′(β )=0. 
Most likely, Heyman should have assumed that, for η small, the approximation he hH looks 
reasonable in engineering terms. The couples of flags (δCCR, δM) should thus be conceived as follows: 
(0,0) for Heyman, (1,0) for CCR and (1,1) for Milankovitch solutions. 

In sum, the system {h=h1, h=h2, h=he} formed by equilibrium Eqs. (1)−(2) and tangency 
condition (4), with hH = β cotβ inserted in it, can be solved for the three unknowns β, η, h, at any given 
value of α (or of the group A=α cot α /2; notice that the dependence on α goes always through the term 
A entering only in Eq. (2)). The solution of this system turns-out “cubic” for Milankovitch, 
“quadratic” for CCR and “linear” for Heyman solutions, see Cocchetti et al. (2010), where explicit 
analytical representations of the solutions are also provided. 

Comparison of the Three Solutions. Results for the three solutions at some given values of the 
half-opening angle α are listed in Table 1. 

Table 1: Heyman, CCR and Milankovitch solutions at variable half-angle of embrace α. 

Arch opening CCHHAARRAACCTTEERRIISSTTIICC  PPAARRAAMMEETTEERRSS 

α A β η h ĥ = η h 

S 
O 
L 
U 
T 
I 
O 
N [deg] [rad] [1] [rad] [deg] [1] [1] [1] 
H 0.711924 40.7902 0.0227694 0.825056 0.0187860 

CCR 0.688721 39.4608 0.0228482 0.825094 0.0188519 
M 

60 1.04720 1.81380 
0.688718 39.4606 0.0228489 0.825052 0.0188515 

H 1.02677 58.8293 0.105965 0.621113 0.0658164 
CCR 0.951141 54.4963 0.107426 0.621772 0.0667947 

M 
90 1.57080 1.57080 

0.950925 54.4840 0.107478 0.620881 0.0667311 
H 1.31409 75.2920 0.314124 0.344942 0.108354 

CCR 1.11714 64.0072 0.326547 0.349556 0.114146 
M 

120 2.09440 1.20920 
1.11248 63.7402 0.327607 0.342263 0.112128 

H 1.54066 88.2735 0.661358 0.0464391 0.0307129 
CCR 0.981348 56.2271 0.740638 0.0681781 0.0504953 

M 
145 2.53073 0.797935 

0.866901 49.6698 0.763995 0.0391491 0.0299097 

Notice that the analytical limits of validity of the three solutions are obtained for a 
non-dimensional horizontal thrust that vanishes (h=hl=0 ). Thus, the three solutions for the 
purely-rotational collapse mechanism hold for half-angles of embrace α that are less than about 150°, 
respectively less than αl 

H=148.371° for Heyman, αl
CCR=151.742° for CCR and αl 

M=148.444° for 
Milankovitch solutions (Cocchetti et al. 2010). 

The outcomes of the three solutions are also reported in plot form in Fig. 2, at variable half-angle 
of embrace α. The inner hinge angular position β (α) is represented in Fig. 2a. Notice that, for Heyman 
solution, β(α) is a monotonic increasing function of α, whereas, for both CCR and Milankovitch 
solutions there appears a stationary point, respectively at (αsβ

 CCR=127.788°, βsβ
 CCR=64.6918°) and at 

(αsβ
 M=125.845°, βsβ

 M=64.1635°). The differences between the three solutions are here more 
appreciable, where one notes that CCR and Milankovitch solutions are very near up to peak, whereas 
Heyman solution clearly diverges from them at increasing α. Nevertheless, the differences in β do not 
influence in significative terms the values of the other parameters η and h. Indeed, as presented by 
Heyman in quoting historical contributions on the subject, these characteristics are not that sensitive 
with respect to approximate evaluations of the inner hinge position, which plays just an intermediate 
role in this sense. However, β is a true geometrical parameter of the collapse mechanism of the arch. 
The new solutions advanced here show, through the stationary point of β(α), that the haunch hinge 
first increases and then decreases back at raising α, going to zero in the limit case with hØ hl=0.



The trends for η(α) and h(α) are depicted in Figs. 2b−2c. They are both monotonic, increasing for η 
(meaning that the thickness necessary for equilibrium has to increase at increasing opening angle of 
the arch) and decreasing for h (meaning that the horizontal thrust that the arch is able to transmit in 
the limit equilibrium condition decreases at increasing angle of embrace). Notice that h decreases 
from 1 to 0 as α grows from 0 to αl. Accordingly, η increases (and reaches the limit value ηl

CCR=1 for 
the CCR solution). This shows that arches with α >90° get weaker and may stand just at the price of an 
increase in arch thickness. The trend for the non-dimensional horizontal thrust ĥ=η h is reported as 
well in Fig. 2d. Notice that, since η and h get zero respectively on the two limits α=0 and α=αl, the 
trend of ĥ(α) is necessarily bell-shaped, also for Heyman solution, with a stationary point that appears 
at (αsĥ

 H=120.918°, βsĥ
 H=75.7771°) for Heyman, (αsĥ

 CCR=122.836°, βsĥ
 CCR=64.3969°) for CCR and 

(αsĥ
 M=121.426°, βsĥ

 M=63.9130°) for Milankovitch solutions. This shows that there is a well-defined 
value of α, at around 120°, that leads to the maximum thrust that the arch is able to sustain in the limit 
equilibrium condition, at given material and geometrical parameters γ and d, r, that would be assigned 
at design stage. Note that the αsĥ positions of the stationary points of ĥ(α) are slightly different than 
the αsβ stationary locations of β(α), which are nearer to 130°. 

 
Figure 2: Heyman, CCR and Milankovitch solutions at variable half-angle of embrace α: (a) Angular 

position β of the haunch hinge; (b) Thickness to radius ratio η; (c) Non-dimensional 
horizontal thrust h; (d) Non-dimensional horizontal thrust ĥ = η h. The trends for α small 
are plotted as well. Numerical DDA solutions are also scored in (a) and (b). 

For both Figs. 2a−2b CCR appears in the fork made by Milankovitch and Heyman solutions, with 
inverted roles in the two cases (see also results in Table 1). However, for Figs. 2c−2d the roles are 
somehow interchanged, with Heyman between Milankovitch and CCR solutions in Fig. 2c and 
Milankovitch between Heyman and CCR solutions in Fig. 2d, at least until at around peak. Notice 
that, surprisingly, Heyman solution, which acts on h in stating the tangency condition, turns-out very 
accurate for the estimation of h itself and almost superimposed to Milankovitch solution, until αl 
(despite clear divergence on β). Nevertheless, differences on ĥ are still visible in Fig. 2d near peak. 
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Finally, in Fig. 2 the approximations of the three characteristic parameters for α small are also 
reported. These approximations are the same for the three solutions, that turn-out indistinguishable 
for small values of α. In Figs. 2a−2b the numerical results scored by the following DDA solution are 
superimposed as well for direct comparison purposes. The astonishing matching can be appreciated. 

Numerical DEM Simulations by a DDA Formulation 

A numerical analysis with a DEM formulation (DDA for Windows, v. 1.6, freely downloaded from 
sourceforge.net) has been carried-out, in view of confirming the trends experienced by the analytical 
solutions (Rusconi 2008, Rizzi et al. 2010). 

First, four different friction coefficients μ=tan φ of the joints of a full semi-circular arch (α=90°) 
with sub-critical thickness, discretised with 36 blocks (5° voussoirs) were imposed, showing a purely 
sliding collapse for φ=0°, a mixed sliding-rotational mode for φ=10° and φ=20° and a purely 
rotational mechanism for φ=30°. The subsequent analyses were then run with a high value of friction 
angle, φ=50°, in view of complying with Heyman hypothesis−1. 

Second, semi-circular arches with critical thicknesses from both Heyman (ηH=0.105965) and CCR 
(ηCCR=0.107426) solutions, made with variable number of blocks (24, 30, 36, 60, 72, 90, 108, 144, 
180), i.e. with (7.5°, 6°, 5°, 3°, 2.5°, 2°, 5/3°=1.67°, 1.25°, 1°) voussoirs, were analysed, by 
investigating the position of the resulting haunch hinge β. Results in terms of β were not influenced 
by either η=ηH or η=ηCCR and were displaying overall a hinge position β that was definitely more on 
the side of CCR and Milankovitch solutions (Fig. 3). 
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Figure 3: DEM (DDA) numerical results for a full semi-circular arch (α=90°) made with variable 

number of blocks, with comparison to Heyman, CCR and Milankovitch solutions. Angular 
position of the haunch hinge β. 

A third analysis was attempted to determine the critical value of η of full semi-circular arches with 
variable number of blocks. The obtained numerical results are shown in Table 2. Notice that the DDA 
solution tends to diverge, almost linearly, at increasing number of blocks, since the continuum is 
turning more and more into a discontinuum. However, the relative distance between DDA and 
CCR/M solutions appears to be always less than the distance between DDA and Heyman solutions 
(i.e. CCR/M are always between Heyman and DDA solutions). This agreement further validates in 
academic terms CCR/M vs. Heyman solutions, Milankovitch being the nearest to DDA.  

Furthermore, semi-circular arches with four blocks were considered with different so-imposed β 
joint, at decreasing thickness, in view of determining the critical value of η at a given potential 
position of the haunch hinge. This also showed good agreement with all three analytical solutions. 

Finally, arches with different cut-off angles α were considered, with discrete 5° voussoirs, to 
determine both β and η at the first collapse instance that appears at decreasing η. The results are 
reported by points scored in Figs. 2a–2b, which shows a very good agreement with CCR/M analytical 



solutions. Especially, the true trends for β (α) in CCR and Milankovitch solutions, through a 
stationary point, are confirmed, as opposed to the monotonic increasing trend of Heyman solution. 

Table 2: Same as Fig. 3. Critical thickness to radius ratio η . 

DDA HEYMAN CCR MILANKOVITCH 
ηDDA  ηΗ  Δη / ηΗ ηCCR  Δη / ηCCR ηΜ  Δη / ηΜ 

 
n. of 

blocks 

 
voussoir 
opening 

[1] [1] [%] [1] [%] [1] [%] 
12 15° 0.10884   2.71   1.32   1.27 
18 10° 0.11068   4.45   3.03   2.98 
24 7.5° 0.11242   6.09   4.65   4.60 
30 6° 0.11405   7.63   6.17   6.11 
36 5° 0.11505   8.57   7.10   7.05 
60 3° 0.11985 13.10 11.56 11.51 
72 2.5° 0.12198 15.11 13.55 13.49 
90 2° 0.12540 

0.105965 

18.34 

0.107426 

16.73 

0.107478 

16.67 

Conclusions 

This paper presented general solutions for the classical Couplet-Heyman problem in the statics of 
circular masonry arches. In the spirit of Heyman studies and based on his classical hypotheses, new 
analytical solutions have been reported, by correctly re-stating the tangency condition in terms of the 
true line of thrust. Such solutions have been assessed and confirmed by parallel numerical DEM 
(DDA) computations. The following main conclusions can be stated: 
• CCR and Milankovitch solutions are quite tight to each other and not that dissimilar from Heyman 

solution in engineering terms, except for the position of the haunch hinge β, which is a true 
characteristic of the collapse mode. However, this does not influence significantly the other 
parameters η, h and ĥ, especially when α § 90°, as usually considered in the literature. 

• Numerical DDA simulations have produced results that, specifically for the true haunch hinge 
position, are overall in great agreement with the new outcomes of both CCR and Milankovitch 
solutions, rather than with classical results by Heyman. This further supports the validity of the 
analytical trends reported here. 
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