
Proc. of Ottavo Convegno Italiano di Meccanica Computazionale, Italy, June 15-17, 1994,Politecnico di Torino, Dip. di Ingegneria Strutturale, p.107-112FRACTURE-ENERGY-BASED REGULARIZATIONOF A SCALAR DAMAGE MODELEgidio RIZZIPolitecnico di Milano, DIS, Milano, ItalySUMMARY. Finite element computations with the smeared approach give rise tomesh dependence when strain localization occurs. The inelastic process localizes in anarrow region of the structure diminishing to zero with further mesh re�nement. Thetotal energy dissipation vanishes and a full snap back of the solution is recoveredwhen a mixed force/displacement control is provided. Regularization of a scalardamage constitutive description is introduced for obtaining objectivity of the resultswith mesh re�nement of a plane strain concrete panel in axial extension.1. INTRODUCTIONStrain localization occurs in bodies described with the smeared constitutive ap-proaches which account for softening behavior, while the body is still treated as acontinuum. Pointwise strain localization analysis for plasticity, smeared crack mod-els or sti�ness degradation models results in the prediction of failure bands withvanishing width. The onset of bifurcation is detected by singularity of the so-calledlocalization tensor which characterizes fully the underlying bifurcation mode (seeRizzi [1] for a literature review).For the post-bifurcation path the band width is not speci�ed and a �nite elementcomputation is not objective since the failure prediction depends on mesh densityand orientation. While directional bias can be reduced by resorting to enhanced�nite element formulations (Steinmann and Willam [2]), independence of the re-sponse is achieved by regularizing the material description (de Borst [3], Willamand Dietsche [4]). Higher order continuum descriptions (non local models, gradi-ent dependent models, polar Cosserat materials) prevent localization to appear in adiscontinuous fashion since a characteristic length de�ning the region with smeareddamage, is built in into the constitutive model. These models are not immediatethough, thus it appears correct to regularize if possible the usual local constitutivedescriptions. Since the failure process must be a surface driven phenomenon froman energetic view point, an intrinsic length which �lls the gap between the materialand the structural response must be introduced even in the local approach.The fracture-energy based regularization introduces a modi�cation of the softeningparameters according to the mesh size, such that to impose the same energy dissipa-tion per unit area even with mesh re�nement (Willam and Dietsche [4], Feenstra [5]).Although this can be considered as a \trick", the approach seems to be completelylegitimate since it's rather impossible to di�erentiate between material and struc-tural response when localization occurs, resulting in non-homogeneous stress/strainstates. 1



This contribution will introduce the fracture-energy regularization for the isotropicscalar damage model by Simo and Ju [6], which indeed originated from the for-mulation of Mazars [7] and that can be recast in the general framework for elastic-degradation provided recently by Carol et al. [8]. The model results in an exponentialsoftening behavior in 1D-tension/extension problems, while the rapidity of the soft-ening decay needs to be adjusted according to the �nite element size. The modelhas been introduced into a research-oriented �nite element code together with theappropriate techniques for tracing the post-peak and snap-back response beyond thelimit/bifurcation point. A mixed force/displacement control in the form of the clas-sical arc-length method by Wempner [9] and Riks [10] with the arc-length adaptationby Cris�eld [11] and a simple back-tracking strategy (Dennis and Schnabel [12]) hasbeen implemented.The axial extension problem of a rectangular plane strain concrete panel shows thevalidity of the regularization procedure for Mode-I type failures and the robustnessof the arc-length implementation. The overall force-displacement response showsa quite sharp regularized snap-back structural response, independent of the threediscretization densities considered.2. STRAIN LOCALIZATION FOR SCALAR DAMAGE MODELSThe constitutive behavior of concrete can be conveniently modeled with the smearedapproach, which allows to de�ne strain and stress at the local level. The constitutiverelation for the overall macroscopic response can be given in a total or an incrementalform (Feenstra [5]). A typical description which accounts for both strength as well assti�ness degradation, starting from a secant relation �=E :�, and a secant sti�nessor compliance evolution law, can be recast in an incremental form _�=Et : _�, afterde�nition of the tangent sti�ness operator relating stress and strain rates (Carol etal. [8]). Most of the Continuum Damage Mechanics models can be �tted in thisframework.Once the expression for the tangent operator is provided, it is possible to analyzethe failure indicators for di�use and discontinuous failure associated with limit andbifurcation points respectively (Rizzi [1]). The simplest scalar damage description,resorts to a single damage variable D which describes the sti�ness degradation,whereby all the components of the initial secant sti�ness tensor Eo are a�ected inthe same manner as E=(1�D)Eo, and the stress/strain relation reads �=(1�D)Eo:�.The damage threshold is de�ned by a loading condition F=0, where F=F (�;D) foran associated model (Carol et al. [8]), with the de�nition of the energy norm� = p� :Eo :� (1)For the plane strain axial extension case with �1�0, �2=0, �3=0, the scalar damagemodel results in onset of localization at the limit point with a critical direction oflocalization between loading axis and normal to the discontinuity surface dependingon the Poisson ratio: tan2�cr=�=(1��) (Rizzi [1]). For �=0 Rankine type failure isrecovered.In this work, the elastic-damage part of the strain-based isotropic damage modelpresented by Simo and Ju [6], has been considered and implemented in a researchoriented �nite element code. The main features of the model can be summarized in2



the following. The damage function and the tangent operator are given asF = � � r = 0 Et = (1�D) Eo � @D@� � 
 �(1�D)2 � (2)where the damage evolution law is assigned by means of three parameters A, B, �o,according to D(�) = 1� (1� A) �o� � A eB(�o��) (3)The physical meaning of the model parameters is readily found considering the axialbehavior, where �=pEo�:� = (1�D) Eo � = (1� A) pEo �o + Eo � eB(�o�pEo �) (4)Thus A de�nes the residual strength for full damage (D!1), B de�nes the peaktensile strength ft and the softening decay, and �o prescribes the initial elastic limit(Mazars [7]).The algorithmic damage evolution is determined by the following procedure. Dur-ing the incremental/iterative procedure the energy norm is computed from the cur-rent value of the total strain �n+1(�n+1). Then, if �n+1-rn�0, Dn+1=Dn, otherwiseDn+1=D(�n+1). The damage threshold is updated as rn+1=max[rn; �n+1].3. FRACTURE-ENERGY-BASED REGULARIZATIONIn view of introducing a regularization into the constitutive description withoutresorting to more sophisticated material models, a possibility is to impose the sameenergy dissipation per unit area when fracture propagates with a relative openingdisplacement under a certain stress state. Then, the fracture energy Gf representsthe area beneath the corresponding stress/displacement curve and the abscissa axis.When localization occurs the inelastic phenomena are highly localized in a narrowpart of the discretized structure which depends from the element size, whereas theremaining part of the structure unloads elastically. Since the dissipation is vanishingwhile reducing the mesh density, it is necessary to change the material parameterssuch that the overall response is objective. In other words we have to impose that thesame energy dissipation is always achieved. Indicating with gf the area underneaththe stress/strain diagram, and denoting with lc a characteristic length, which �llsthe gap between structural and material response in the localization band, �=u=lc,we have to set gf=Gf=lc.The characteristic length must be directly related to the element size. In this analysiswith quadrilateral four-noded elements, it has been assumed thatlc = p2 pAel (5)where Ael is the area of the element evaluated numerically (Feenstra [5]).From the 1D response considered above it is evident that for obtaining a boundedgf it is necessary to set A=1, which means zero residual tensile strength. Further,for controlling the area gf while keeping constant the peak stress ft, the maximumstress must be reached at the initial elastic limit, which happens for B�1=�o. Inthis case regularization is possible without changing the peak stress. Then thematerial description results in a linear elastic/exponential softening behavior and3



the softening exponential decay parameter B can be adjusted for imposing the sameenergy dissipation: Z 10 �(�)d� = 1B2 + �oB + 12�2o = Gflc (6)where Gf=lc must be larger or equal to �2o =2 for avoiding a sharp snap-back at theconstitutive level right after the peak at the initial elastic limit. This condition givesan upper bound to the characteristic length, while the condition B�1=�o imposes alower bound on lc: 0:4 Gf�2o � lc � 2:0 Gf�2o (7)The admissible solution B�0 of the second order equation (6) rendersB(lc) = (�o lc +qlc (4 Gf � lc �2o )(2 Gf � lc �2o ) (8)which is the desired relation between the softening decay parameter and the char-acteristic length assumed within the bounds (7).4. MIXED LOAD/DISPLACEMENT CONTROLFor the analysis of the post-peak and snap-back regimes the solution algorithm mustintroduce an additional constraint for allowing mixed load/displacement control.The classical arc-length technique originally proposed by Wempner [9] and Riks [10]is adopted. In this approach the tangent trial solution �ut in the displacementvector/load parameter plane (u; �), is corrected along a path perpendicular to thetangent such that the �nal increment �u satis�es the constraint condition�u ��u+ (��)2 = (�s)2 (9)where �s indicates the arc-length in that plane. The sparsity of the tangent sti�nessmatrix Kt can be maintained by decomposing the displacement increment in twocontributions �u=���u1+�u2 and by solving two decoupled algebraic systems(de Borst [3]) Kt ��u1 = P ; Kt ��u2 = R (10)where P is the load vector and R the out-of-balance force vector.For achieving convergence near limit points a backtracking algorithm along the line ofthe trust region methods for numerical unconstrained optimization problems (Dennisand Schnabel [12]) decreases conveniently the step size up to convergence: �s �s=�, with 1� � �2. The backtracking parameter � is conveniently chosen after apreliminary calculation (�=1.2 has been adopted in the following analyses).An automatic arc-length adjustment is necessary for accelerating the convergence iflarger steps are allowed and for stabilizing the number of iterations from the previousincrement nprev through an optimal value nopt=4 � 5. The arc-length adjustmentby Cris�eld [11], �s �s nopt=nprev performed well with good stabilizing of thenumber of iterations after each perturbation of the step size. The arc-length mightdecrease dramatically near limit points or increase excessively loosing accuracy ofthe solution. Thus upper and lower bounds on the arc-length were established toassure accuracy and economy of the numerical solution.4



5. PLANE STRAIN CONCRETE PANELA plane strain concrete panel with aspect ratio 1:2 (8.5 in � 17 in) has been an-alyzed. Thickness is taken as 1 in. The following material parameters have beenconsidered: Eo=4; 000 ksi, �=0:15, ft=1 ksi, Gf=4:5 10�4 kip=in.A quarter of a specimen has been discretized with standard four-noded quadrilateralelements with three di�erent mesh densi�cations (Fig. 1). The homogeneous statehas been altered by imposing a displacement constraint at the top of the specimen,which means no relative displacement between the specimen and the loading ap-paratus. That's necessary for triggering localization, which appears in the row ofelements close to the top. This is consistent with the pointwise localization anal-ysis mentioned above only for �=0. Same result is obtained even using enrichedelements (Rizzi and Willam [13]) without alignment, which indicates still the needof a regularization of the directional mesh bias.
(2�4) (4�8) (8�16)Figure 1. Di�erent standard quadrilateral element discretizations.The non-regularized load/displacement response is showed in Fig. 2(a), where thesoftening decay parameter has been set equal to B=70 in=pkip. As expected, morebrittle behavior is recovered for �ner meshes. The regularized response is depictedin Fig. 2(b). The structural response is quite independent on the mesh density andshows a pretty sharp snap-back, well described by the arc-length technique.
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(a) Standard solution (b) Regularized solutionFigure 2. Plane strain axial extension problem with constraints at the top.5



6. CONCLUSIONSA fracture-energy-based scalar damage model has been presented and implementedin a research-oriented �nite element code, together with a mixed load/displacementcontrol necessary for overcoming limit and snap-back points in the solution space.Regularization in mode-I type failure has been achieved, while the robustness of thealgorithm has been checked. The regularization approach appears to be perfectlylegitimate for this simple loading condition. More complex constitutive formulationsappear to be necessary for a global regularization e�ect in 3D loading.REFERENCES[1] Rizzi, E., \Localization analysis of damaged materials", Master Thesis, Int.Rep. CU/SR-93/5, CEAE Dept., University of Colorado, Boulder, U.S.A., 1993.[2] Steinmann, P. and Willam, K., Performance of enhanced �nite element formu-lations in localized failure computations, Comp. Meth. Appl. Mech. Eng., 90,845-867, 1991.[3] de Borst, R., Computation of post-bifurcation and post-failure behavior of strain-softening solids, Comp. Struct., 25, 2, 211-224, 1987.[4] Willam, K. and Dietsche, A., Regularization of localized failure computations,(Ed. Owen, D.R.J., O~nate, E. and Hinton, E.), 2185-2204, Proc. of COMPLASIII, Part II, Barcelona, Spain, April 6-10, 1992, Pineridge Press, Swansea, 1992.[5] Feenstra, P.H., \Computational aspects of biaxial stress in plain and reinforcedconcrete", Ph.D. Thesis, Delft University Press, Delft, The Netherlands, 1993.[6] Simo, J. C., and Ju, J. W., Strain- and stress-based continuum damage models.I-II, I. J. Sol. Struct., 23, 7, 821-869, 1987.[7] Mazars, J., \Application de la m�ecanique de l'endommagement au comporte-ment non-lin�eaire et �a la rupture du b�eton de structure", Th�ese de Doctoratd'Etat, Univ. Paris 6, LMT, Cachan, France, 1984.[8] Carol, I., Rizzi, E. and Willam, K., A uni�ed theory of elastic degradation anddamage based on a loading surface, Int. Rep. CU/SR-93/2, CEAE Dept., inpress on I. J. Sol. Struct., 1994.[9] Wempner, G.A., Discrete approximations related to nonlinear theories of solids,I. J. Sol. Struct., 7, 1581-1599, 1971.[10] Riks, E., An incremental approach to the solution of snapping and bucklingproblems, I. J. Sol. Struct., 15, 529-551, 1979.[11] Cris�eld, M.A., A fast incremental/iterative solution procedure that handlessnap-through, Comp. Struct., 13, 55-62, 1981.[12] Dennis, J.E. and Schnabel, R.B., \Numerical methods for unconstrained opti-mization and nonlinear equations", Prentice-Hall, Englewood Cli�s, New Jer-sey, U.S.A.,1983.[13] Rizzi, E. and Willam, K., Spatial discretization of strain localization, Proc. ofLocalized Damage 94, Udine, Italy, June 21-23, 1994.6


