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Abstract

A phenomenological constitutive framework of orthotropic elastic damage in initially-isotropic
materials is presented. Focus is made on secant stress/strain relations that are derived through
the application of the so-called damage-effect tensors, namely the fourth-order operators that
define the linear transformations between nominal and effective stress and strain quantities. In
the attempt to provide selected forms of anisotropic damage approaching general orthotropy,
several proposals of damage-effect tensors are formulated. Such fourth-order operators are ob-
tained from the general orthotropic representations as particular instances that satisfy a specific
duality requirement between compliance- and stiffness-based derivations.
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1 Introduction

Starting from the original contributions by Kachanov [10] and Rabotnov [16], Continuum
Damage Mechanics (CDM) has reached by now a considerable stage of development. This
includes in particular the constitutive modeling of anisotropic elastic stiffness degradation
in quasi-brittle materials such as e.g. concrete, rocks, composites. The CDM formulations
are typically based on the introduction of damage variables of various tensor orders, e.g.
scalars, vectors, second- and fourth-order tensors (see the comprehensive reference lists
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provided in both research articles, e.g. [23, 5, 6, 3|, and specific monographs on the subject
that are now available, e.g. [13, 11, 19].

The present authors have contributed to the topic with a proposal of a unified theoretical
framework of elastic stiffness degradation and damage based on a loading surface [5],
and with the formulation of constitutive models for anisotropic stiffness degradation in
initially-isotropic materials [6, 7, 17]. The latter models are characterized by second-
order symmetric damage tensor variables with evolution laws expressed in terms of a
(non-holonomic) pseudo-logarithmic rate of damage. The resulting secant elastic relations
correspond to the restricted form of orthotropic material behavior described by Valanis-
type damage [21, 24].

During these investigations the request of deriving more general forms of orthotropic
elastic degradation spontaneously arose, together with the desire of preserving at the same
time a full duality between possible alternative compliance- and stiffness-based derivations
of the constitutive relations. These dual properties can be read directly in the structure of
the so-called damage-effect tensors, namely the fourth-order operators that, based on the
underlying damage tensor variables, define the linear transformations between nominal
and effective stress and strain quantities, and that may prescribe in practice the secant
relations of elastic damage [15, 8, 1, 14]. Summaries of the different proposals of the
damage-effect tensors in the literature are available e.g. in [12, 23, 22, 3].

Recently, the authors [18] have attempted a generalization of these previous propositions
by providing a set of dual orthotropic damage-effect tensors, which are obtained from
the general fourth-order orthotropic representations as specific instances that satisfy the
duality requirement. The present note reconsiders some of these new proposals and pro-
vides additional instances of dual damage-effect tensors including those that complete a
solution family based on a specific non-singular tensor generator.

The secant CDM relations of the elastic-damage model and the definition of the damage-
effect tensors are provided in Section 2. There, the general orthotropic representations of
fourth-order symmetric damage-effect tensors, and secant compliance and stiffness tensors,
in terms of three ‘shear-like’ and six ‘non-shear’ coefficients and corresponding tensor
addends are introduced, and the requirement of duality is precisely stated. To elucidate
the type of representations that embed the sought dual structure, a few examples of both
symmetric and non-symmetric dual damage-effect tensors are given first in Section 3,
including a particular symmetric instance that lacks only two ‘shear-like’ coefficients and
embeds all the ‘non-shear’ coefficients. Then, Section 4 outlines a complete family of
symmetric solution instances based on a specific ‘shear-like’ generator, starting from the
more general one that includes all the ‘non-shear’ coefficients, going through new solution
instances that involve just subsets of the ‘non-shear’ coefficients (and work with or without
constraints on the coefficients), to arrive finally at the sole ‘shear-like’ generator itself. All
the solution instances of the family are expressed in complete invariant form and are
resumed in synoptic Table 1 at the end of the section. A few final comments are also
gathered in the closing section.
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Notation. Compact or index tensor notation is used throughout. Second-order tensors are
identified by boldface characters (e.g. w, ¢, €, o), whereas fourth-order tensors are denoted
by blackboard-bold fonts (e.g. A,C,E). Symbols > and ‘:” denote the inner products with
single and double contraction. Superscript * indicates the transpose operation applied
either to second-order tensors, or to fourth-order tensors; componentwise (w");;=w;; and
(A");jk=Api;. The dyadic product of second-order tensors is indicated with ‘®’ and de-
fined as (A®B):C=(B:C) A, for any second-order tensors A, B, C, whereas ‘® ’ denotes
the symmetrized dyadic product of second-order tensors defined as (A ® B):C=A-C*-B",
for any second-order tensors A, B, C, where C°*=(C+C")/2 is the symmetric part of C;
COIIlpOIleIltWiSG (A®B)wkl:AU Bkl and (AgB)z]kl:(Azk le+Ail B]k)/2 I and I]SII@I
are respectively the second-order and symmetric (major and minor symmetries) fourth-
order identity tensors; componentwise I;;=d;; and I}, =(dx0;1+020;1)/2, where §;; is the
Kronecker delta (0;;=1 if i=j, §,;=0 if i£5). [* maps any second-order tensor A into its
symmetric part A®, ie. [®:A=A® and any symmetric second-order tensor B=B" into
itself, i.e. [*:B=B. Symbol ‘tr’ denotes the trace operator applied to second-order tensors,
i.e. tr A=I:A=A;;. For more detailed definitions see e.g. [17,Appendix A].

2 Secant relations of orthotropic elastic damage

At any damage state the nominal (small) strain tensor € and stress tensor o are related
by the following secant elastic constitutive law:

e=C(Cy,D):0; o=ELE,D):e€, (1)

where C and E are the current positive-definite fourth-order compliance and stiffness
tensors, inverse of each other (i.e. C:E=E:C=[°) and endowed with both major and minor
symmetries. The current values of compliance C(Cy, D) and stiffness E(Ey, D) start from
their initial values Cy, £y in the undamaged state and evolve as functions of generally-
defined damage tensor variables D, or of a dual damage tensor variables D. Assuming that
the undamaged behavior is isotropic, the initial compliance and stiffness are expressed by
the classical relations
1 + IZ0)

Co = 18- 2 101; F=2GI81+A 11, (2)
Ey Ey

in terms of undamaged Poisson’s ratio 1y and Young’s modulus FEj, or undamaged shear
modulus Gy and Lamé’s constant Ay. Alternatively, the undamaged bulk modulus K,
could be employed instead of Ay, through the usual relations 3Ky=3A¢+2Go=E,/(1—2u4),
in a convenient volumetric/deviatoric representation of Eq. (2).

Through a purely phenomenological approach, the damage-state relations C=C(Cy, D)

and E=E(Ey, D) are derived here by following steps that are typical of the CDM frame-
work (see e.g. the references quoted in the Introduction and the schemes provided in



Egidio RIZZI, Ignacio CAROL

[17, 7]): 1) a constitutive law is introduced for the undamaged material relating effective
strain and stress quantities, €. and o.g, acting in the intact material between micro-
cracks: €.5=Co:00, oe=E¢:€qpr; i1) a relation between nominal and effective (stress or
strain) quantities is assumed, in linear form, by introducing a non-singular fourth-order
damage-effect tensor which is a function of the damage variables, e.g. A(D) in the stress
relation o.g=A(D):0; iii) a second link between nominal and effective states is postu-
lated through a principle of ‘energy equivalence’ [8], 0:€/2=0 cq:€qx/2, which automat-
ically renders secant stiffness and compliance enjoying major symmetry. The following
nominal/effective relations are then consistently assumed/obtained:

o =A(D):o0, €e=A(D): € ; exr=A(D):e, o=A(D):0x, (3)

and compliance and stiffness are expressed as:

C(Co, D) = A"(D): Co: A(D);  E(Co, D) =A(D):E: A (D), (4)

where A (D)=A"'(D) and A (D)=A" (D) are dual non-singular fourth-order damage-effect
tensors, inverse of each other (i.e. A:A=A:A=[°) and endowed with minor symmetries (not
necessarily major symmetry).

Concerning the dual underlying damage variables D and D entering the dependence of the
damage-effect tensors with the damage state, the model which is in the focus of the present
paper makes use of positive-definite symmetric second-order tensor variables: the so-called
integrity tensor ¢ of Valanis [21], varying between I and 0, or its inverse ¢:q7§_1, with
complementary variation between I and oo. The square-root tensors w=¢'/2, w=¢'/>
are as well employed in notation to express explicitly the final functional dependence of
A and A on the damage variables.

Now, since either the damage-effect tensor A(w) or the damage-effect tensor A(w) could
be postulated independently as the source ingredient of the constitutive formulation, we
are interested in seeking particular instances of the general orthotropic representations
of A(w) and A(W), with the property that their inverses display the structure of the
transposes of the tensors obtained by replacing w with its dual inverse w (or viceversa).
Indeed, notice that inverse tensors A and A play the same role in Eqs (3), (4), except
for a transpose operation (which obviously matters only if the damage-effect tensors are
not fully symmetric). The resulting damage-effect tensors are said then to possess dual
structures [18].

General representations of orthotropic fourth-order tensors can be obtained either by
algebraic decomposition, e.g. [25], or through representation theorems, e.g. [2, 4], and
could be used for either the compliance and stiffness or the damage-effect tensors. The
damage-effect tensors could be represented in both symmetric and non-symmetric forms.
In the present paper focus is made mainly on symmetric representations, while non-
symmetric expansions of the damage-effect tensors are treated in [18]. Then, the general
representation of a symmetric damage-effect tensor A(w) representing orthotropic damage
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in initially-isotropic materials, e.g. [12], can be given as follows, according to the ordering
proposed by Zysset and Curnier [24]:

A= IQT+aI@l+azwdw+a, (WRI+IRW) + a5 W@ W2+ ag wWRW
+ar ( WRI+I®W)+ag (WRQW+wWRW)+ag (WRI+I®w?),

where the 9 scalar coefficients a;, 7=1-9, are any polynomial functions of the three prin-
cipal invariants of w (which can be classically defined as “I,=tr w, “[,=(tr? w—tr w?) /2,
“I,=det w=tr w3 /3+tr> w/6—trw trw?/2 and enter the Cayley-Hamilton theorem ap-
plied to w, i.e. w*—*I; w?+"I, w—"I;1=0). In the non-symmetric case each of the three
coefficients ay, ag, ag would split in two, namely a7y, are, asi, ass, a9y, a9y (€.g. az; and arg
attached respectively to w®I and I®w, and so on), for a total of 6+6=12 coefficients.

Notice that the three terms embedding symmetrized dyadic products ® in representa-
tion (5) are attached to the three ‘shear-like’ coefficients ao, a4, ag and affect only the
diagonal entries of a 6x6 matrix representation of the damage-effect tensor in the prin-
cipal axes of damage. The six supplemental rank-one updates provided by the addends
with standard dyadic products ® are attached to the remaining six ‘non-shear’ coefficients
ai, as, as, ar, ag, ag and affect only the upper-left 3x3 submatrix representation of A.

Representations similar to (5) hold as well for the dual damage-effect tensor A, in terms
of the dual square root integrity variable w and dual coefficients with bars, a;, i=1-9
(generally functions of the three principal invariants of w, “I,,"I,,"I;), and also for the
current compliance C and stiffness E in terms of damage variables ¢, ¢ and analogous
scalar coefficients c¢;, e;, i=1-9. The links between alternative representations of each
fourth-order tensor in terms of either ¢ or w (and of ¢ or W) can be obtained through
the isotropic functions ¢p=w? and w=¢'/* (and ¢=w? and w=¢'/?) [20].

Notice that a natural constraint on representation (5) (and dual one for A) arises from
Eq. (3) in the absence of damage: nominal and effective quantities come to coincide and
the linear transformations must reduce to the identity. Then, for w=I, A(I)=1°*=I&1,
that is, when all the scalar coefficients are evaluated in I:

lag + 2a4 + ag](I) = 1;  [ay + as+ a5 + a7 + as + ag)(I) = 0. (6)

3 Significative examples of dual damage-effect tensors

Considering representation (5) for A and dual one for A, the point under consideration here
is precisely that of seeking particular instances of such general representations (possibly
with a limited number of terms) that correspond to each other through an inversion
operation spanning the same set of tensor terms. In other words, if a coefficient is lacking
in A, say e.g. ai, the dual one @, should also disappear in the dual representation of A,
while the others should remain untouched.
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The task of seeking instances that solve the problem at hand has been tackled in [18]. A
set of solution instances has been derived, based on either a rigorous treatment, whenever
possible, or on guessing procedures and guided searches, as well as on the use of tensor
multiplication tables and on the repeated application of Sherman-Morrison’s formula for
the inversion of a rank-one update of a given tensor.

The rigorous analysis showed that solution sets including all the three ‘shear-like’ coef-
ficients are possible and that the unknown dual ‘shear-like’ coefficients can be readily
expressed in closed form. On the other hand, locating specific subsets of the ‘non-shear’
coefficients corresponding to each other in the dual structures is more involved. Particular
solution instances missing one or two of the three ‘shear-like’ terms can also be conve-
niently identified, in particular those containing only either ‘shear-like’ coefficients asq, ao
or ag, ag. These two possibilities are further explored in the present paper, especially the
second one concerning ‘shear-like’ coefficients ag, ag, which originates the solution family
presented in Section 4. A new general solution based on ‘shear-like’ coefficients as, ao and
containing all six ‘non-shear’ coefficients is given as well in the present section.

Before presenting the solution instances of the family characterized by ‘shear-like’ coeffi-
cients ag, ag (Section 4), a few particular instances of damage-effect tensors endowed with
dual structures and based on both ‘shear-like’ generators a; I® I, ao IR I and agw @ w,
ag W @ w are given below as illustrative examples of the sought correspondence. All the
presented cases work without constraints on the coefficients.

One first case is readily apparent:

Solution (2.1). The isotropic case in which only the two-coefficients sets (a1, az) and
(@1, as) are kept in the expansions of A and A:

A=aI@l+a I, A=aIxl+a I, (7)
with
1 ay
Gy =—: O1=———". 8
2 a9 ! as (3@1 +6L2) ( )

This assumption may lead to a general form of isotropic damage based on two independent
scalar damage variables (if the two coefficient functions aq, ay are independent), or to a
restricted form of isotropic damage based on a single scalar damage variable (if the two
coefficient functions aq, as are linked to each other, as for instance in the classical scalar
damage models of the (1—D)-type), see e.g. [9]. Solution instance (2.1) is based on ‘shear-
like’ generators as I® I, a; I® I (number 2 as the first label digit) and contains a single
‘non-shear’ coefficient (number 1 as the second label digit).

A new solution instance based on the same ‘shear-like’ generators as I®I, a I®1 of
Solution (2.1) and representing a full generalization of it that contains all six ‘non-shear’
coefficients ay, as, as, ar, as, ag (and thus without constraints on the coefficients) can be
derived as follows in full invariant form:
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Solution (2.6). Symmetric damage-effect tensors A and A with the seven-coefficients
sets (aq, as, ag, as, ar, ag, ag) and (ay, as, as, as, ar, as, ag) (lacking only the two ‘shear-like’
coefficients ay4, ag and ay, ag) form the symmetric dual inverse pair:

A=wI@l+aI®l+aww+as w?® w?

+ar ( WRI+I®W)+taz (WQW+wRW:) +ag (WRI+I®w?); ©
A=wlIRI+aIl+a;wew+ad; w?Q w?

+a; ( WRI+I®wW)+as (WQW+WRW?) +a (W RI+I®w?),

with
1 Ny N (5% s Vg
Gy = — 1= as = as = ——=
a2 ay ds ay do ay do (1())
M) I
_ hoy _ Nog I3 __ TNog I3
7T — ] ag = 7 Qg - 7
ay dsy ay ds ay do
where

dy = a3 + (a1a3a5 — ara? — asa? — ag(azag — 2arag) + as(azas — ag))
(M2 — AN — APV + 18 ML, — 27V57)
+ a3(3ar + 20771, + (a5 + 2a0) ("1,* — 2°T,) + 2a5("1,* — 3¥1, T, + 3°1y)
tas("1,! = 4T, + 21 + A7) )
+ 2a3|(aras — a3) ("L * = 4L, + V17 + 67,7y
+(a1a3 — a2+ (ayag — azag)*I; + (asar — agag)"”]3) (“1,% — 3"1,)
+<a1a8 — azag + (asay — agag)™l, + (azas — a%)w[3) ("1,% — 4™1,"1, + 9*1,)
—(azay — azas) (">, — 4717 + 3¥1) |

Nigp = (a5a% — ay(azas — a2) + ag(azag — 2a7a8))~
(1,272 — 2717 — A7 4 10 7L, — 9V157)
— a3a1 + 2071, + as™1,? + (2a0 + 208”1, + as("1,* — 1)) (*1,* — 1))
— a2 |2(araz — a?)(*1,” =1 ) + (aras — a2) (2T, * — 471,21, + *1,2 + 41,"L,)
— 3%, ", + 31) (12)

V12, — 271,27 + 3%, 715)
+2(asar — agag)(“I,**I, — 2%1,"1,% + *I1,**I, + 3*1,"I,)
+(a3a5 I,* — a3("1,* — 2W]2)) ("Iy* = 2"1,13)
—2(a1,"ly + azas(*,” = 3°1,71) )

+2(arag — arag) (2"
)

—2(a3a9 — a7as
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N3 = (2a5a$ — (2a; + az)(azas — a2) + 2ag(azag — 2a7a8))-
'(w124 - 4wIlw]22wI3 + W‘IIQW]SQ + 6w]2wl32>
+ ag{(3a$“”[2 — (azas — a2)(*L,> — 2"1,%) + 2(azag — azag)(2°L,* — W11WI3))W12 (13)
—(Bay + a2)[as"L,? + (a5 ("L, — 1) + 2a5°1,) (1,71, — “13)|
+(6arag™l, — 2(asar — asa) (2L, —1,"15) + 3a3(*1, "1, —"1y) ) ("I, ", —1) }

’FLQ5 = 2(@5@% + (lg(agag — 2@7@8) — (a1 + ag)(a3a5 — ag)) (“722 — 3w]1w13>
+ as [3@% + 3ag(2a7 + ag™l,)™1; — (3a; + as) (ag + (2ag + a5W]1)Wll) (14)
—4(&7(@8 + a5w[1) — ag(ag + agw[1)>w[2 — 4(&3@5 — a%)wllv"]?)} R

No7 = ((al + ag)(azas — a3) — asa? — ag(azag — 2a7a8))-
'(wll(wf23 + 6WI32) - WIQWI3(4w112 - wjz))
+a3 {(CW + as"l)"1, + (a9 +as("1,* — w]2)>(w]1w]2 — 1)
—as (" Ty — 21,2, + 1,2 (15)
+ag {2 (a1a3 — a2 + (asay — CLgag)wjlwIQ)wllwlz + (aras — a2)(“I,"1,—*1,)(2*1,> =1,
—(CL5CL7 — asag — (azas — ag)wf1) (21", — 3%15)"1;
—(a1as — azag)(2"1, "Iy — 4°1,°7T, + *1,%) — (asag — azas) (21,1, + “15)"D] |

Nog = ((a1 + as)(asas — a3) — azai — az(asa; — 2a8a9)) (2¥L,° — T, 1,1, + 9"1,°)
+ a2 [(3ar + ap)(as"T, + a5, (", — 1))
—3(a2 — a2*I,*)"1, — 2(asar — agag)"1,"I; — 4(azas — a2)*I,> (16)
—(3aray — as(3as + az) + 3a3*T, — 2(azas — a3)*Iy ) (21,1, — “Ty)
—((a3a9 — arag) — (asay — Clgag)wjl)(4w[22 — Wflwlg)} :

Mg = ((a1 + ag)(azas — a3) — asa? — ag(azag — 2a7a8))(W11W1'22 — 42, + 3VLM)
+ a3 (a7 + (az + ag)™I; + as(*I,> — “I,)*I, + ag(2"I,* — WI2))
+as [(2(a1a3 —a?) + 2(azas — a)*I,*I, + (ara5 — a2)(2"1,* — "1,) (17)
+(asar — asag) (2", + ng))‘”[l
+(arag — azag)(4*1,* — L) — (azag — azag)(2*1,*1, + 3w[3)} :

Reduced particular cases of this solution based on five and four ‘non-shear’ coefficients
(including also non-symmetric instances that are not comprised in the general relations
provided here) are given in full details in [18]. There are no particular cases of this general
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solution that work without constraints on the coefficients (except of course for isotropic
Solution (2.1) and for the degenerate instance containing only the ‘shear-like’ tensor
generators as IR I, a IR alone).

Four additional significative cases based on ‘shear-like’ generators ag w @ w, ag W @ W can
be reported (including two non-symmetric ones):

Solution (6.0). The ‘shear-like’ generators attached to ag and ag taken alone (no ‘non-
shear’ coefficients):

A=agwWQW; A=agWRW, (18)
with
1
e = — . 19
a6 g (19)

This case is remarkable since it renders, through Eqs (2), (4), the Valanis-type compli-
ance and stiffness [21, 24] in which the inverse integrity tensor ¢ and integrity tensor
¢ just replace the identity I in the original isotropic compliance and stiffness (2). In-
deed, taking ag=ds=1, i.e. by assuming the ‘basic’ damage-effect tensors Aps=¢*/> ® ¢'/?
and Ap=¢ /? @ ¢ /2, Valanis-type secant compliance and stiffness are recovered [6]:
C=(1+10)/Eo ¢ @ p—110/ Ep p2¢, E=2Go ¢ R p+Ag pR7.

Solution (6.1). The implications of Solution (6.0) suggest that the symmetric Valanis-
type structure of compliance and stiffness could be taken as well for the damage-effect
tensors themselves, i.e. by keeping only the dual two-coefficients sets (ag, az) and (ag, as)
in the representations of A and A:

A=agWRW+a3WRW; A= WRW+a3WRW, (20)
with
1 as
o= —; Gg=-———u2 21
6 ag 3 a6(3a3—|—a6) ( )

Clearly, the arising secant compliance and stiffness are no longer of the Valanis-type.
This solution represents the first symmetric generalization of Solution (6.0) based on
single additional ‘non-shear’ coefficients as, as3. Further generalizations containing more
‘non-shear’ coefficients are pursued in Section 4, where all particular symmetric solutions
of the family based on ‘shear-like’ generators agw @ w, ag w @ w are determined. T'wo
supplemental non-symmetric instances are given instead below.
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Solution (6.1ns). A non-symmetric solution instance still based on the same ‘shear-like’
generators attached to ag, Gg, and in a sense similar to Solution (6.1), is given by the dual
non-symmetric damage-effect tensors embedding just two-coefficients sets (ag, ag2) and
(ag, ag1) (in a 12-coefficients non-symmetric counterpart of representation (5)):

A=agwOW+apleaw’;, A=aGWRW+ay W' I, (22)
with
_ 1 _ g2
6 ag o1 ag (3&92 + CL@) ( )

The arising secant compliance and stiffness still belong to the above-mentioned Valanis-
type structure but include enhanced elastic parameters replacing undamaged ones and
embed a convenient volumetric/deviatoric decomposition of the damage properties that
allows to assign different weights to bulk and shear damage components (‘extended’ for-
mulation, see [7] for the details).

An additional non-symmetric case still based on the same ‘shear-like’ coefficients and
generalizing the ‘extended’ model in Solution (6.1ns) can also be derived as reported in
[18]. This solution case includes four ‘non-shear’ coefficients; it is remarkable because it
comprises previous Solutions (6.0), (6.1), (6.1ns) and works as well without constraint
on the coefficients:

Solution (6.4ns). Five-coefficients sets (ag, as, ara, ass, agy) and (ag, as, ary, asy, do1) give
rise to the non-symmetric dual inverse pair (based on four ‘non-shear’ coefficients):

A:a6W®W+a3W®W+CL72I®W+CL82W®W2+CLQQI®W2; (24>
A=agWRWFasWRW+an WRI+ag W2 QW+ ag w21,
with
1 agaz + 3(asagy — aras) _asagy — Iy /"I5(asagy — araas)
ag=—, a3 =— ] y arr=— i )
Qg Qg dns Qg dns (25>
__ GeQg2 + 3(asagy — araaga) __ Gelr2 — VI, (azagy — arass)
agy = — ] y  ag1 = — ] )
Qg dns Qg dns
where

dns == a6(a6 + 3@3 + 3@92 + (I72w[2/wf3 + aggwjl) + (a3a92 — a72a82)(9 — w[1 w[2/w[3) . (26)

Solution (6.1ns) is recovered from Solution (6.4ns) by setting consistently az=a7o=ago=0,
az=ara=ag2=0 in Eqs (24)-(26). Notice that ‘twins’ of Solutions (6.1ns) and (6.4ns) can
also be obtained just by inverting the roles between coefficients with and without bars in
Eqgs (22) and (24).

10
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4 A family of symmetric dual damage-effect tensors

Solution (6.6). A full solution instance based on ‘shear-like’ generators agw ® w, agw @ W
generalizing Solutions (6.0), (6.1) and containing all six ‘non-shear’ terms (thus without
constraints on the coefficients) can be obtained by taking symmetric damage-effect tensors
A and A with the seven-coefficients sets (a1, as, as, ag, ar, as, ag) and (a1, as, as, ag, a7, Gs, Gy)
(lacking only the two ‘shear-like’ coefficients ay, a4 and as, a4):

A=agwRW+a Il +a3w@w+ as w? @ w?

+a; ( WROI+IQW)+as (W ROW+WRW?)+ay (W?RI+I®w?); o)

A sWRW+a I@I+a3 wew+as w? @ w?

ar ( WRI+IQW)+as (WQW+WRW?) +ay (WQI+I®w?),

I
]

_|_

with

_ _ _ 2
I n61 _ 63 gz

as do (28)

Qg d67

where

dg = a6< — 9aya5 + 3azag + (ag + 3ag)* + 2agas™I,
+asag(“1,2 — 2"1,) + 2(azas — a?)(*1,* — 3“”[2))””1'32
— ag [2(a3a9 — azag) (M "I, — 9%1;) — 2(a6a7 — 3(aas — a7a9))w12
+2(aras — a2)"l; — 2(asaz — asas) (“1,("1? — 2¥I) — 3", ) |1y 29)
+ ag <a1a6 +2(ajaz — a2) + 2(ayag — arag)*I;
+(aras — ad)("1,* = 2°D,)) (*1,7 = 2°1,"Ty)
— <a1a§ — az(ayaz — a2) + ag(azag — 2a7a8))~

(LAY — AN — AV + 18V VLT — 2777
Ne1 = ag {(alag, — a2, + 2(azar — agag)™1, + (a5(3a3 + ag) — 3a§)wf3} I,
— [Qalag — as (a1(2a3 + ag) — 2(1?) + ag (a9(2a3 + ag) — 4a7a8)} (30)

'(WIQQ - 3WIIWI3) ’

11
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Nes = ag (agaﬁ + 6(asag — arag) + (azas — a2)(“1,* — 2“”]2))“732

- (alag — as(ajaz — a2) + ag(agag — 2a7a8))-

(31)
(12 = 2°L) ("1, = 2°1,°Ly) — 91,7
+ ag(araz — a2)(“1,> — 2*1,"1,) ,
Nes = g (303 — a1(3as + ag) — 2(aras — azag)*l, — (aras — a3)("1,* — 2w]2)) (32)

+ 2(a1a§ —as(ajaz — a2) + ag(agag — 2a7a8)> (“1,% — 31, ,

ner = agas(ac + 3ag + as”1,) "1, + ag(aras — azag) (“I,* — 2°1,"1;)
- <a5a$ + ag(asag — 2arag) — ai(azas — a%)) <w]1 (M,2 — 2", "1,) — 3w_72‘"_73) (33)
- CLGWI3 (CL7(3CL5WI3 - agw]2) + ag(a5w]1w]3 + CLQWIQ)) s

Ngg = CLG(Glag - G%)WIQ + ag [3@1@8 — a7(a6 + 3@9) — Qay (ag‘"fl + a5(‘”112 — QWIQ))
+ag (a3w11 + as(“1,2 — 2w12))}w13 (34)
— (alag — as(ajaz — a2) + ag(azag — 2a7a8)> (“VIQ(WII2 —2%1,) — 3WIIWI3) ,

T_L69 = aﬁ(alag —a7a9)WIQ+a6 (3(&1@5 —|—a7ag) —a9(3a3—|—a6+3a9) + (a5a7 —agag)wll)w[?) (35>
+ <a1a§ — as(aaz — a%) + ag(azag — 2a7a8)) (“I,"1, — 971,) .

Although still given by quite lengthy expressions, Solution (6.6) looks much simpler than
its counterpart Solution (2.6) based on ‘shear-like’ generators as I® I, a; I® I (Section 3)
and originates further interesting particular cases (including one that works without con-
straints on the coefficients).

We start listing now below the six solution cases that contain five of the ‘non-shear’
coefficients and are obtained by eliminating in turn one of the ‘non-shear’ coefficients
from Solution (6.6). The missing ‘non-shear’ coefficient is indicated by the third label
digit.

Solution (6.5.1). Symmetric damage-effect tensors A and A with the six-coefficients sets
(as, as, ag, ar, as, ag) and (as, as, ag, ay, as, ag) (lacking only ‘shear-like’ coefficients as, ay
and as, a4, and ‘non-shear’ coefficients a; and a@;) form the dual inverse pair:

A=agWRW+a3w W+ as w? @ w?

+ar(WRI+I®W)+tag(WQW+wWRW?) +ag(WRI+1®w?); (36)

A

WRW+ a3 W QW + a5 W2 ® W2
W @

(WRI+I®w)+tas (W QW+ WQRW?) +a (W I+I®w?),

I
]

6
ar

+

12
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provided that
nis - 73

asz= ; 3= ——— — —
° 7 Basag"ly? — 2a3(V1,2 — 3¥1,"L) ° 7 3asael,’ — 2a2(*L,2 — 3*1,"1,)

(37)

where

nyy = ag"ly (ag‘"[l — 2(asa; — asag)™l, — (asas — 3a§)wf3>

+ <2a5a$ + ag(agag — 4a7a8)) (“I,2 — VL)
(38)
nig = 5”1y (a3"1, — 2asar — asa)*T, — (asas — 3a3)"1;)

+ (20582 + ag(asag — 4aras)) (“1," — 3°1,"15) |

with

Qr = i . Aa = 7ﬁ1§ as = ﬁ15 w_[32
6 ag ) 3 as d12 ) 5 as d12
aj("Ty* — 2'1,"T3) — (asas™l; + (asar — asag)*Ty)"T;
Qg d1
n18 w]3 _ 3a5a7W13 — ag(a9W12 + 3a8W]3)

C_Lg = = (075}
Qg d12 7 ag di

a7 = (39)

Y

w]3 ,

where

dy = ag(3as + as™1,)"I;* + ag*I;(ag"T, — ag™1,*I, + 9ag™1;) (40)
— ag(""L? = 2V = 3VL,MT) + a7(a5<wjlw]2 — 9Ly — 2a9 ("1, — 3w[1w[3))7
finy = 2075 |a2ag"l," 2 ("1, — 2°T,) + 2asag(as + 3ag) Ty ("1,? — 371, "I;)
+as (a¢"ls* (a6™1, + 9as™1)
—ag"Ty(as"1, 1, — 2a5”1,* — Gag™Iy"T; — 2Tas™1,%) )|
+ a3 (2as09"1," Ty — 205" T5(a7"T, + ag™ly) + a3(“1,* — 2°1,71y) )
(LR — 27, — 20 g+ 4T — 9V (41)
+ a? (a5a6 — 3a2 + a2("I,* — 2‘”]2))‘"_734
— 2agag”l;’ [&G(GBWIQ — 3a5"1;) + ag (a5(W112 — 2V, + 90,8”"13”
+ (afa? + adad) (V1,217 — 271, — 27717
— a2(12a509"1,°(*1,” — 3", 15) + 203("1,? — 3¥1,"L) ("L,” — 2°1,7Ty) — asae™], 1)
— agad"l;* ((ag + 6a0) ("I, — 2°1,15) + 3"I5(4as™, + 3a5"Iy)),

13
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ﬁ15 = 3@7@5“’[32 (a6(3a7 + 2Cngfl) -+ 2(@5@7 — 2a8a9)(‘”112 — 3w[2))
~2(2a5a:"T, — as(2a9"T, + 3as™13) ) (*1,* — 3°1,)"1]

Mg = as(aga? — 3asa?)(*1,**1, — 2*L,% — 3*I,"1;)"1,*
— a2(3a5a6"1," 15" — 2a5a9™1, "5 ("], — 3°1,"Ly) — 2a3(*,° — 3V, 1,"Ty))
— 2a2"I;(agas — asar)(2°1,2*1,% — 471,° — 31,31, + 3*1,"1,"1,)
+ ag(3as(2a507 — asag)"Ty* — a3 ("L,? — 21,71 ) ("1, 2T, — 2°1,% — 3°T,1,)
+ a6a9[<3a8"”]1(a8 + as™l,) — as(ag™; + 6a8w[2))W[33
+agl, "Iy (2051, T; + ao (", — 271, Ty) )|
— a7"l, [aﬁ (3a5(a6 +ag”l, + as™1,? — 2a5"1,) "% + asag™I,(2"1,"1, + 9W]3)>
—2a3(ag + Bag — as”1,) ("1, — 3°1,"1,)] .

(43)

Solution (6.5.1) is obtained as a particular case of Solution (6.6) by setting a;=0, a,=0,
which leads to the constraint (37).

Solution (6.5.3). Symmetric damage-effect tensors A and A with the six-coefficients sets
(ay,as,ag, ar,ag, ag) and (ay, as, ag, Gy, as, ag) (lacking only ‘shear-like’ coefficients as, ay
and ag, a4, and ‘non-shear’ coefficients az and as) form the dual inverse pair:

A=agwWRW+a IR+ asw? @ w?
+a;(WRI+IW)+as (W2 @ W+ wWRWw?)+ag (W @I+1I®w?);

i (44)
A=agwRW+a II+a;w? @ w?
+a; (WRI+I@W) +as (W Rw+wew?) +a(Wel+Iew?),
provided that
1 x 1 P
o i 4y S (45)

T 0L (122 ("L 2L ) @R 9V (M2 (L 2 )

14
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where
ny = agas (6a7 + ag("I,* — 2WIQ))W_732 + aga?(“1,* — 2°1,"1;)
— ar(asar — 2a8a9)<9W132 — (*I,2 = 2"1,) ("1,* — 2w11w13)) ;
(46)
iy = agas (6ar + as("l,” — 2°1,) )57 + agad(*,” — 21,1y
— ar(asar — 2a8ag)(9W[32 — ("I,* — 21 ("1,* — zv’vlﬁg)) ,
with
Qg = — . a1 = — ar — — —
6 as ) 1 ag d32 ) 5 as d32 )
ag d3
3 17— 2" nag
(_18 = CL8 a7 + (Ig( 1_ 2) w]32 B ag g 77139 _23 s
ag d3 Qg d3
where

ds = ag (a7(w[22 —2","13) + 3a8w[32)
+ as (a7 ("1, = 21,2V — 3V1,7T) — as™Ty (ML, — 217 — 3V M) (48)
+ (asay — agag) (V1,212 — 21, — 21 V1, + 4%, Y171, — 9"1,%) |

ng1 = (asay — agay) {ag (2a8W12WI3 + ag(L,? — 2‘”[1“”[3)) — asay(“1,* — 2‘”[1"”[3)}-
(M = 2V, — 2 P 4 AT — 9v)
+ ad 207 (6as"Ty” + a7 (", — 2°1, 1) ) ("1, — 3"1,15) (49)
—a I (L, - 20,7 - 27|
— asag(3as"Iy” + ar ("L — 2°1,°L) )

nss = (asar — agay) {a7 (2(% +ag*l,) + as(“1,* — QWIZ)) — agag(¥I,? — 2”72)}
(MM - 21— 20 P, + AV VLT — 9V
+ 3az|asag (3ar + 205 ("1,% — 2°1,) ) + 4a3 (T, (a5 — as™T,) + Bas™T, )| "1,
+ aZas (20671, ("1, — 2°1,7Ty) + as (", — 20, — 277L?))
+ a2|ag(2as"T, + as(*1,” — 2°1,)) — 2a3("1,* — 3¥L,) | (*1,* — 2°1,)"1,?
+ a3 (6aras™ly® + a3 ("1,* — 2°1,)"L,% + a2(*1,” — 2°1,"1))

(50)

15
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ngo = |3a2a2"Iy + asazas(az"1, — (6ag + as™1,) 1)
—a3 (a7(a9“’]2 + 3as™;) — ag(as + 3ag + Cbgwll)w]3>:|'
(1,202 — 271, — 2% P 4 4V LT — 97L%) (51)
+ (ag(wllwlz — 9%5) + ag(as™I, + 3a5w[3))’
(6azas™ly” + a3 ("1, — 2°L)"1;" + a2("L,” — 2'1,"Ty)) .

Solution (6.5.3) is obtained as a particular case of Solution (6.6) by setting az=0, a3=0,
which leads to the constraint (45).

Solution (6.5.5). Symmetric damage-effect tensors A and A with the six-coefficients sets
(ay,as, ag, ar,as,ag) and (ai, as, as, ay, as, ag) (lacking only ‘shear-like’ coefficients as, ay
and as, a4, and ‘non-shear’ coefficients a; and as) form the dual inverse pair:

A=agwOW+a II+a3wRw

+a;(WRI+I®W) +ag (W QW+ wWRW?) +ag(W2RI+1Iw?); (52)

A=aswOW+ g Iol+awew
+a;(WRI+IQW)+as (W QW+ WRW?) +ag (W2 @I+I®w?),

provided that

ag (a1a6—3a$+2(a1a8—a7a9)‘”Il —a2(*I,* -2 WI2)) —2ag(ayag—2aza9)(*1,>—3*L,) .

= 3a1as — 2a3("I,2 — 3"1,) !
(53)
 ag(aade—3a2+2(aaas — ardo) T, — a3 (“1,” — 2 *1,) ) —2as(a1as — 2a7a0) (*],* — 3 1,)
a3 =— . . ,
’ 3ayag — 2a3(*1,> — 3°1)
with
6 ag ) 1 ag d52 ) 3 ag d52 )
— Tisy . m (ag + ag ™) — ag <a7wfl—|—a9 (W112—2W12)> o (54)
7T — a6d52’ 8 — (16(15 3
3 — 3 Wi
Gy = ap ag ai(dfw—i-ag 1) o,
6 W5
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where

(55)
— 2agag(*I,* — 31,)"I; — a2 (1,1, — 2*L,* — 3*1,*1,),

N5y = aq (a6(3a8w[3 + ag*1,)? + 2as(3aras — 6azag — 2a2°1,)("1,> — 3W11W[3))
+ 2a? (a7(3a7 + 2a9™1)) ("1,? — 3¥1,*1,) — as(3as™I; + 2a9™1,)(*1,* — 3“1,)*I,  (56)
+a3 ("L’ — w]13w]3)) ’

N3 :[alag(alag — 2arag) — a3 (2a1a6 — a2 + 2(a1ag — azag)"l;, — a2(*1,* — 2‘"]2))}-
(2L — 202, — 277L7)

+ al{ag(afi + 6ag + 2ag"1,)*I,* — 12a2ay(*I,* — 3%1,)"1,*

+ag|as(12a9 + as™1, )1, "T” + 9(2azas — a3)"1,”

+(a1a6 + 2(ajag — a7a9)“’]1>(W]22 — 2W_71‘”_73)”

— ar|(as + Gag) (asar + 2ag(ag™l, — as™1,* + 3as™1,) ) — 2asasas(*1,? — 3°1,)| ™1,
— a3 (6agag + a + 2a3("1,* — 3"L,) ) ("I, — 2°1,)"1;”
— 2a? (2a1a6 + 2(ayag — azag)*l, — a2(“1,? 2“’]2))(9“”_732 — V2 4 2" VLML)

(57)

A5y = a1 |a3(3as"Ty + a9"1y) "y — 2a3a(*1,> — 3°1,)"1," Iy
tag(as(3as1, Ty + 2a9™1,"T, + 9ag™13) "Iy —3az(ag™l,” — as*1,"ly — 2a9™1,"Ty) )|
+3a2agag(*I,> — 2%1,"1;)
—2a2(ayag — arag)(2¥1,**1,* — 31, — 4% **I, + 31, "L, 1) (58)
+ (3ata? + 3a2a? — ayag(6aras + asas) + ab ("2 —2"L,) ) (1, "T,7 — 21, T, — 31,1
+ ag™Ty{2asa5 ("1, — 3*1,)(a7"1, — as™1, "Iy — 3aq™ ;)
—ag|ar(3ar + 209”1, + ag (2as(*1,* — 3"I)"I; + ag("1,* — 2°1,)"1, )| } .

Solution (6.5.5) is obtained as a particular case of Solution (6.6) by setting as=0, a5=0,
which leads to the constraint (53).

17



Egidio RIZZI, Ignacio CAROL

Solution (6.5.7). Symmetric damage-effect tensors A and A with the six-coefficients sets
(a1, as, as, ag, as, ag) and (ai, as, as, ag, as, ag) (lacking only ‘shear-like’ coefficients as, ay
and ag, a4, and ‘non-shear’ coefficients a; and ay) form the dual inverse pair:

A=agwRW+aIRT+az3w W+ as w? @ w?

+ag(WQW+wRW?) +ag(WRI+1®w?); (59)
99

A =

@ |

wWOIWF+I®I+azwew+asw? @ w?
QW+ WRW?) +ag (W RTI+1®w?),

+
Ql

(

provided that

e — i nis )
° T ag a2+ ay(VLVLE — 212 — 3VLL)

1 7%,

as ag™l,"I,> 4 a) ("I,"L,° — 2°1,**I, — 3“1,"1;) ’

(60)

where

nks = alagag(“’IQZ — 2¥I,1,) — asagag™l," 15 + agas(ag + 3ag + Clgw_ll)wl32

+ (a1a2 + asad)(“1,*1,% — 21>, — 3*L,"1,) ;

Nk = ayagas(“l,> — 2%1,"1;) — asage™l,"1; + agas(ag + 3ag + as™I,) ™15

+ (@ya3 + asad)(“1,"1,% — 2°1,*"I, — 3*L,"I,) ,

with

2 — i ) a = (a3a9w12 — a6agwf3)w[3 j alag(WIQQ — 2w[1w[3)
‘ Qe ’ ! ag dr ’

i a1 ("l — 271,"15) + (a6 + 3a9)"T5” o vI,? (62)
3 3 as d73 ) 5

7 7 )
ag dr drs

alw_[2 + Qg ] .[3 [ a/g o
3 -

3@1(18 - ?3@9‘"]1 w] 2

Qg d73 ag dn

where

571 = (Clg((l(; + 3a9)"”1'1w[3 — (a3a9W12 — GGCngI?))(wIlQ — 2w[2))w[3
+ ay (as("1,"1,? = 21,7V — 3V, + (63)
Clg(w_[12w_[22 . 2w]23 . 2w[13WI3 + 4W_[1W]2WI3 o 9w]32))7

18
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drs = |ag(a + 3ag + as1,)"Ty + a3 (3(a + 3a0)*T — ag™1,"1, ) |1,

(64)
+ a1(2a3(",° = 3°1,"L) + ag("L,” — 2°1,7E) + as ("M, — 2712y — 3V,7)),

Az = azad (25", — 3'1,) + ag ("1, — 2°1) )1, 15
- alwlg{aﬁag(QG + 3ag + ag"1,)(*1,* — 2*I,)"I, + a? (3@6“”]1“”]3 — 2ay("1,* — 3“”]2)””[2)
+as|a2 1"y + 6asag(*1,* — 3°1,)I,
tag(205(2°1, Ty — 3,"5) — ag("I,” — 2°1,)"T,) | }
—a? [aﬁas ("1, 2—2"1,) (V1,2 —2"1,*T,) + 2azag(2*1,**1,> — 3%1, —4™1 > 1,4+ 3"1,*,"I,)
+(303 + asas + a3("1,* — 2°1,) ) (11,2 — 2T, 2Ty — 371,T)|

(65)

Solution (6.5.7) is obtained as a particular case of Solution (6.6) by setting a;=0, a;=0,
which leads to the constraint (60).

Solution (6.5.8). Symmetric damage-effect tensors A and A with the six-coefficients sets
(a1,as, as, ag, ar, ag) and (ay,as,as, ag, ay,ag) (lacking only ‘shear-like’ coefficients as, ay
and as, a4, and ‘non-shear’ coefficients ag and ag) form the dual inverse pair:

A=agWRW+a IRl +azw@wW + as w? @ w?
+ar(woI+Iow)+a (W @I+I@w?);

) (66)
A=agWRAW+ a1 IQI+ a3 W QW+ a5 w2 ® W2
+a;(WRI+IQW)+ay (W QI+I®w?),
provided that
1 ng,
o1 i,
where
+ ag [a?wf2 —azag™,"I; + az (3a9 + a5 (1,2 — 2“’]2))“’]3} ;
(68)

+ ag 621, — asag™], "y + ag (3a9 + as("1,” — 2°1,)) "1y |
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with

1 n ag + 3ag + a5(¥I,% — 2¥I.

a6:7; d1:$, 6/3:_@3 6 9 5§1 2)w]‘3,
a6 ag dg3 dgs ag dg3
W w 2 _ wW
ay = _ 607 = 0aas"h + asar(Ty’ ~2°D) o (69)
ag dgs
a5V, + aq™L asaq™l, — 3asar"1.
G = as 5 41 A3 92’ 69:—392 90507 3w]3’
ag dg3 ag dgs

where

dsy = ag*Iy+asar ("1, "1, —2"1,* =3"1,"T;) + ay (2a5(w]12_3w]2)w~73_a9<w]1w~72_9w13))

70
+ ag {a7wfz+(3a3+3a9+a5(‘”]12—2W]2)>W]3} , (70)

dss = a5a7 ("1, "1, = 21,0 = 2 1+ 471 T = 912+ a (a5, T+ an (", = 2,y )
t as (a5 T, ("1, 2T, — 21,7 = 371 ) —ag (1,1, — 271, 1 = 371,71)) | (71)

ns1 = a3a3"Ty (2a3(",” — 3°1,"1y) + as("L,” — 2°1,"1))
— a2{ar"ly a6 ("], > = 2°1,) ("1, =271, T) + 2a5 (V1,7 ("1, 2 = 2°1,) = 3V o ("], 2 =) )|
+ (a3(3az + ag)"l,* + a2("L,* — 2°1,71y) ) (1,2, — 21,7 — 31,7T) }
— as{2asa0(3a7 — az"1,) ("1, — 31, L)y + a3y (a1, Ty + a7 ("1, — 2°1,°Ty))
+ag|a7"T5((4as + 3a0)*1,” — 6(as + a0) 1,1y ) + a2*I,(*1,* — 2°1,"1y)
+ a5l (305”1, — ao™L, ("T,” — 2°1,71)) | } -

(72)

Solution (6.5.8) is obtained as a particular case of Solution (6.6) by setting ag=0, ag=0,
which leads to the constraint (67).

Solution (6.5.9). Symmetric damage-effect tensors A and A with the six-coefficients sets
(a1,as,as, ag, az,ag) and (ay,as, as, ag, ar, as) (lacking only ‘shear-like’ coefficients as, ay
and as, a4, and ‘non-shear’ coefficients ag and ag) form the dual inverse pair:

A=agWRW+aIRI+a3w@wW + as w? @ w?
+a;(WwRI+I®w)+ag(W@w+wew?);

A=agwRW+a II+a3w@w+ a5 w? @ w?

g W &
ar(WRI+IQW)+as (W QW+ WQWw?),

+
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provided that

CL16L66L8W]2 + (a1a§ + a;,a%)(‘”]lwfz — 9WI3> + a6(3a1a5 + 3@7@8 + CL5CI/7WIl)w]3

as = :
° a1a5(‘”[1w12 — 9w[3>
(74)
o Wdgas"ly + (mag + asaz) (1,1, — 9%1,) + ag(3a1as + 3aras + asar™1,) ",
with
_ _ a1, + 3a7"1, g3 3ag + as"1, 9
ag = —; a1 = —a - , = —— , = —q - YL,
‘ Qe ' ° ag dgy ’ ag dogy dos ° ' ag dys ’ (75)
_ 3a1+a7 Il _ a8w12+3a5 13
— - T — h T
= ag dgy 3 ' ag dys 5
where
doy = a7 (3ag + 2a5("I,* — 3"1,) )1, (76)
+ax|(as + Iy (as + a5*1,) — 205”1, ", — 3(3as + a5"1,)"1]
6295 = <3a6a8w[3 -+ a5(a7w11W[2 — 9CL7WI3 -+ agwflwfg))wf3 (77)

+ a1(2a8(w122 = 31"3) + as ("I — 271 — 3w]2w]3)) ;

gy = a1, (a7(3a8 +a5°T) (0 + a5 ("L, — 2°T,) )T,
—{2a7(3a8 + a5™1,)(ag + as™1,*)"1,
— [2a5a7(3a8+2a5wll)wfl—i—agag (a6+(a8 +a5wfl)‘"[1)]w[2+2a5a6agwl22}w[3
—3[3a5a2 — as(a? + 9azas) + a2 (3ar"T, — ag(*1,? - 2“72))}“732) (78)
+ag ((16 + a5 (1,2 — 2W1'2)) [3&6618“,[3 + as (a6w11w13 + a; (V"I — 9WIS))}W[32
+a?[(as(as™T, + 3as"Iy) + a2 (", — 9°1y) ) ("1, — 2°1,1)
+as(as™l + 3a5"15) ("L, — 20,7 — 20 + 4T — 9717

Solution (6.5.9) is obtained as a particular case of Solution (6.6) by setting ag=0, a9=0,
which leads to the constraint (74). Solutions (6.5.7), (6.5.8), (6.5.9) display a similar
degree of complexity, which is much lower than that shown by Solutions (6.5.1), (6.5.3),
(6.5.5). These, in turn, appear to be even more involved than source Solution (6.6).

We consider now three solutions based on four ‘non-shear’ coefficients. The two missing
coefficients are indicated by the last two label digits.
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Solution (6.4.17). Symmetric damage-effect tensors A and A with the five-coefficients
sets (as, as, ag, ag, ag) and (as, as, ag, as, ag) (lacking only ‘shear-like’ coefficients as, a4 and
as, ay, and ‘non-shear’ coefficients ay, a; and ay, ar) form the dual inverse pair:

A=ag WRW+az wRQwW+tas w2 @ w?+ag (W2 @ w+w Q@ w?)+ag (W? @ I+I @ w?);
(79)
A=ag WRWHas W WHias W2 @ W2tas (W? @ WA+W @ W?)+ag (W2 @ I+I @ w?),

provided that

0 — agas "Iy 05 — ag ag "I,"T, + ag (“I,2 — 2°1,"1,) |
ag "I, ag “1,* 7 (80)
_ agag "1y _ag LY+ ag (M1, — 27")
ag = — 57 > as = ag — )
with
ag = 1. dg = 1 as ™Iy as = a2 2a5("1,* = 3"Ty)"I; + ag(“1)* — 2"1,)"1,
CLG’ Qg 3a8wl3 + CLQWI2’ 9 Qg (3&9 + CL6)2 (3agwl3 + CLQWIQ) (’81)
_ as a9W11WI3 _ Aag
as ag = —

- Qg (30,9 + CL6) (3&8‘"]3 + CLgWIQ)’ Qg (3@9 + a6) '

Solution (6.4.17) is obtained as a particular case of Solution (6.6) by setting a;=a;=0,
a1=a,=0, which leads to the two constraints (80). If constraint (80a) is placed on ag instead
on ag, relation (81b) for as transforms to the typical inversion relation as=—as/[as(3as+ag)]
displayed by Solution (6.1), Eq. (21b). Notice also the similar dual relation between ag
and ag in Eq. (81e).

Solution (6.4.58). Symmetric damage-effect tensors A and A with the five-coefficients
sets (a1, as, ag, ar, ag) and (ay, as, as, ar, ag) (lacking only ‘shear-like’ coefficients as, a4 and
as, ay, and ‘non-shear’ coefficients as, ag and as, ag) form the dual inverse pair:

A=agwRwW+a IQTI+azw@w+a; ( WRI+I®@w)+ag (W RI+1I®w?);
(82)

A=tgwWwRWH+a IQI+asww+a; ( WRI+I®w)+a (W I+I®w?),

provided that

0 —a a7l + ag(*I,* — 2"1,) g — 2607
1 9 as ) 3 ao w]l ) (83)
g Gt ag(“1,% — 271,) o Gsar
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with

ag = —; a1 =4a , a3 = — )
ST Y ag (3ag + ag)? (3ar + ag™,) 1, ° ag (3az + ag™ly)
(84)

a7

ay ag ™I, _—
0= —

" ag (3ay + ag) (3az + ag™1,) "1,

G
ag (3ag + ag)

Solution (6.4.58) is obtained as a particular case of Solution (6.6) by setting as=ag=0,
as=ag=0, which leads to the two constraints (83). Once again, if constraint (83b) is
placed on a7 instead on ag, Eq. (84c) for az transforms to the typical inversion relation
as=—as/[as(3as+ag)] displayed by Solution (6.1). The similar dual relation between ag
and ag also holds in Eq. (84e).

Solution (6.4.78). Symmetric damage-effect tensors A and A with the five-coefficients
sets (aq, as, as, ag, ag) and (ay, as, as, ag, ag) (lacking only ‘shear-like’ coefficients as, a, and
as, ay, and ‘non-shear’ coefficients ar, ag and ar, ag) form the dual inverse pair:

A=agw@W+a IT+a3 wowW+as w2 Qw2 +ag (W RI+1®w?);

(85)
A=agWRW+a IQI+a3 WO W+a; W2 @W? +ady (W I+1I®w?),
provided that
w[l w[S WIQ B B \7\/[1 W[S B B \Xl]’2
ay = —a9g ——, a5= —09 57wt ; 1= —Gg —7, G5=—0g 57—, (86)
I, 1" I, ",
with
A = — a1 = = ag=————= g —=——""—=—"—
“Tas T asds 0 ag(3az+ag) ag drs
(87)
N T A
ag drg
where
drs = ag ™1, "I, "y — 2 a9 (“1,° (1, = *1,) =1, (" + 3™1)) - (88)

Solution (6.4.78) is obtained as a particular case of Solution (6.6) by setting a,=ag=0,
ar=ag=0, which leads to the two constraints (86). Notice the typical inversion relation
between ag and as in Eq. (87c).

A solution based on three ‘non-shear’ coefficients is considered next:
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Solution (6.83). Symmetric damage-effect tensors A and A with the four-coefficients
sets (ay, as, ag, ag) and (ay, as, ag, ag) (lacking ‘shear-like’ coefficients as, ay and as, a4, and
‘non-shear’ coefficients as, a7, ag and as, ar, ag) form the dual inverse pair:

A=agwRAW+a Il +a; w?@wW? +ag (W?RI+1I®w?); (89)
A=agw@W+a Il +as W@ Ww?+ady (WRI+1Iw?),
with
_ 1 _ (Cl92 - a1a5) (w[22 - 2w11 w[3) — Q504 w[32
g = —; a1 = = )
Qg Qg d (9())
_ a10g —( 9- — CL16L5) ( ]1 - 2“72) wr 2 _ QgQg +3(a92 - CL16L5) wr 2
as = — = I°, ag = — 7 157,
Qe d ag d
where
Ci = (aﬁ(aﬁ + 6(19) + 9(@92 - a1a5) + asag (w]12 - 2“72)) w]32 (91)

+ (mag — (a5® — aras) (", = 27D)) (", = 21, *1) .

Solution (6.3) is obtained from Solution (6.6) just by setting az=ar=ag=0, az=ar=ag=0
and works without constraints on the coefficients.

Two solutions embedding the two ‘non-shear’ coefficients indicated in the last two label
digits are now reported:

Solution (6.2.59). Another solution instance arises as a particular case of Solution (6.3)
above by setting a;=0, a;=0, namely by taking symmetric damage-effect tensors A and A
with only the three-coefficients sets (a5, ag, ag) and (as, ag, ag) (lacking ‘shear-like’ coeffi-
cients ag, ay and ag, a4, and ‘non-shear’ coefficients aq, as, ar, ag and aq, as, ay, as):

A=agw@W+as W QWw:+ag (WRI+1I®w?);
- = (92)
A=GdGgWRW+as W2 QW2 +adyg (W @I+1®w?),
provided that
a2 (*I,% — 2°1,"1 a2 (“I,> — 2"1,°I
a5 = 5 ("1 w21 3); a5 = 5 ( 27W21 3>’ (93)
Qg I3 Qg [3
with ,
1 2 ("% — 2"
ag = — ; dszag( - 22), Gy = ——— (94)
ag ag (3&9 +CL6) ag (3@9 +CL6)

Notice that the conditions a;=0, a;=0 imposed into Solution (6.3) lead to the con-
straint (93).
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Solution (6.2.19). A further solution instance which is an alternative particular case of
Solution (6.3) is obtained by setting as=0, a;=0, namely by taking symmetric damage-
effect tensors A and A with only the three-coefficients sets (a1, ag,a9) and (ay, ds, dg)
(lacking ‘shear-like’ coefficients as, ay and asg, a4, and ‘non-shear’ coefficients as, as, az, as
and C_Lg7 C_L5, C_L7, (_18)2

A=agwRwW+a I®Tl+ag (W RI+1®w?);

(95)
A=tgwOwW+a IoI+a (W2 QI+10w?),
provided that
2 (wT 2 . w —2 (wT 2 _ w
a1:a9<ll 212); C_h:%(]l_ 212)’ (96)
Qg ag
with
1 CL2 w]2_2w] wJ a
ag = —; a1 = » (1 21w33, Go= ————2 (97)
ag ag (3&9 + ae) I3 ag (3&9 + CLG)

Notice that the conditions as=0, a;=0 imposed into Solution (6.3) lead to the con-
straint (96). The presence of coefficients ag, a9 is common to both Solutions (6.2.59)
and (6.2.19). Coefficients ag, ag correspond to each other with the same relation (94c)
or (97¢), which holds as well for Solutions (6.4.17) and (6.4.58), Eqs (81e) and (84e),
and, similarly, for non-symmetric Solution (6.1ns), Eq. (23b). Such relation resembles
closely the typical inversion relations between dual coefficients a; and a; in the isotropic
structure (7) of Solution (2.1), see Eq. (8b), and between dual coefficients a3 and as in
Solutions (6.1), (6.4.78), see Eqs (21b), (87c), and in Solutions (6.4.17), (6.4.58), see
comments following Eqs (81), (84).

The remaining solution instances of the family that embed respectively only one and
none of the ‘non-shear’ coefficients are already given in Solutions (6.1), (6.0), Section 3.
The various solution instances of the family based on ‘shear-like’ generators agw @ w,
ag W @ w are summarized in Table 1 below.
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5 Conclusions

A complete family of symmetric orthotropic fourth-order damage-effect tensors with dual
structures has been derived in full invariant form. These instances complement those al-
ready presented in [18]. The solution family is based on ‘shear-like’ generators agw ® w,
agw ®@w and includes fifteen solution instances (seven of which were not presented pre-
viously: Solutions (6.5.1), (6.5.3), (6.5.7), (6.5.8), (6.5.9), (6.4.17), (6.2.59)), starting
with more general Solution (6.6), which includes all the six ‘non-shear’ coefficients. Most
of the obtained solutions are particular cases of others and work through constraints on
the coefficients. However, Solutions (6.6), (6.3), (6.1), (6.0) succeed in reaching the dual
structure without constraints on the coefficients. The new general solution based on ‘shear-
like” generators as I®I, a; I®T and including all the ‘non-shear’ terms (Solution (2.6))
is given as well in the paper in full invariant form. Particular instances of such case are
available in [18].

The solution instances advanced here represent new candidate propositions of damage-
effect tensors allowing for dual compliance- and stiffness-based derivations of the constitu-
tive relations in orthotropic damage. These damage-effect tensors should lead to damaged
compliance and stiffness embedding less restricted forms of orthotropic damage than that
of Valanis-type, with a complexity that increases with the number of additional coefficients
that are kept in the representation. The ultimate convenience of any of the damage-effect
tensors advanced here in the final development and implementation of a constitutive model
of orthotropic elastic damage remains to be validated on physical grounds and explored
both analytically and numerically.
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