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Abstract. An anisotropic elastic-damage model for initially isotropic materials
is presented. The model is based on a pseudo-logarithmic second-order damage
tensor rate. To derive the complete form of the tangent stiffness, various tensor
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1. Introduction

While developing a constitutive model apt to describe anisotropic elas-
tic stiffness degradation (or elastic-damage, in the context of Contin-
uum Damage Mechanics, CDM) the authors encountered unexpected
difficulties in developing analytically some of the terms involved in
the formulation, namely the quantities that required various tensor
operations and derivatives of tensor functions to be performed. In the
original formulation of the model (Carol et al., 2001a,b) the authors
managed to recover the final analytical form of the constitutive equa-
tions only for a specific simple type of elastic-damage based on an
associative pseudo-Rankine loading function: the required derivatives
were performed by resorting to spectral decomposition. However, the
desire of more general compact form expressions of the constitutive
terms and of the derivatives involved, as well as the need for appropriate
tools apt to expand the various tensor operations, spontaneously arose.
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This note presents such compact form derivations and focuses on the
required technical aspects of tensor formalism. Its purpose is twofold:
first, the general explicit expressions of the constitutive equations that
are derived with the present approach enhance and complete the formu-
lation of the proposed constitutive model; second, though the adequate
sources of information concerning tensor operations and derivatives of
tensor functions can be found in the literature, the rather involved
assembly of these tools should interest by itself the community of
elasticians, and, more generally, constitutive laws developers.

The constitutive framework for elastic degradation and damage at
small strains developed by I. Carol and coworkers (Carol et al., 1994,
1998, 2001a,b,c) is briefly summarized first. This model accounts for
a selected form of orthotropic damage of initially isotropic materials
based on a second-order pseudo-logarithmic damage tensor rate. The
derivation of all the terms involved in the fourth-order tangent stiffness
tensor which defines the constitutive response in terms of rates is then
performed. Compact form expressions are obtained, which are valid
generally for any specific model belonging to the class of constitutive
laws considered here. Notation details, some useful derivatives and a
table of tensor algebra operations are collected in the Appendices.

Notation in brief: Compact or index tensor notation is used through-
out. Vectors and second-order tensors are identified by boldface char-
acters, whereas fourth-order tensors are denoted by blackboard-bold
fonts. Superscript T indicates the transpose operation, while ¢r is the
trace operator. Symbols ‘-’ and ‘’ denote the inner products with sin-
gle and double contraction. The dyadic product is indicated with ‘®’,
whereas ‘®@’ denotes the symmetrized outer product. I and I*=I®1I
are the second-order and symmetric fourth-order identity tensors.

2. Constitutive equations of elastic-damage

In Carol et al. (1994) a general theoretical framework for elastic degra-
dation and damage based on a loading surface was provided; such
constitutive framework has then been complemented by the introduc-
tion of a pseudo-logarithmic second-order damage tensor rate (Carol
et al., 2001a,b), while an ‘extended’ formulation of such model based
on volumetric/deviatoric decomposition has been recently completed
(Carol et al., 2001c); an earlier but preliminary account of these latest
developments is available in Carol et al. (1998). In this section, the
basics of this constitutive framework are presented.
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2.1. ELASTIC DEGRADATION AND TANGENT STIFFNESS

The constitutive behavior under consideration is fully characterized by
the following secant relations (Figure 1):

c=FE:¢e; e€e=C:0o, (1)

where o and € are the nominal stress and (infinitesimal) strain tensors,
and E and C are the current secant stiffness and compliance, respec-
tively. Fourth-order tensors E and C are assumed to be constant on
each unloading/reloading branch, fully symmetric (minor and major
symmetries) and Positive Definite (PD). They may be derived from
a positive definite quadratic strain (complementary) energy function,
u=e:E:e/2=0:C:0 /2. Thus tensors E and C are invertible, and are the
inverse of each other: E:C=C:E=I[*; their initial values at the beginning
of the loading process (undamaged material) are denoted by [Eq and C.
Unloading always leads to the origin of the stress/strain curve, so that
no plastic (irreversible) strains are present. However, energy dissipation
takes place in the form of stiffness degradation or compliance increase,
which are related by E=—E:C:E; C=—C:E:C. Differentiation of eqn (1),
with respect to time yields the following strain rate decomposition:

E=C:64+C:0=¢6+¢, (2)

where €,=C:6 and €;=C:o are the elastic and degrading strain rates
as depicted in Figure 1 (Dougill, 1976).

(o

-~/ do =L : de,

J/ de

3]
[0

Figure 1. Stress/strain curve and current secant stiffness. Definition of the elastic
and degrading strain increments.
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Stiffness degradation (compliance increase) is then brought to strain
level and, by introducing a loading function in stress space, F'(o), which
defines the current amplitude of the domain where no further elastic
degradation takes place, F/()<0, eqn (1), can be recast in the following
plastic-type rate equations:

o =LE:(6—¢&);
éd:)'\m; (3)
OF OF

Fen:6-mi, n=2F _or
ne U oX |y

where X is the inelastic multiplier, m the direction of the degrading
strain rate, generally distinct from n, that is the local normal to the
loading surface (for associative degradation rules m is proportional or
equal to n), and H is the hardening/softening parameter. The possible
activation of further elastic degradation is governed by the complemen-
tarity conditions F'<0, >\>0 F A=0, while the occurrence of further
loading in the inelastic range is ruled by the consistency conditions
F<0, FA=0. In case of further elastic degradation, A>0, the consis-
tency condition F=0 is solved for )\ which in turn is back-substituted
into eqns (3)12 to give the followmg rate relation:

o = [Et D€ 3
E: - E _ (4)
F=F——2%2% g Hin:F:m,
H
where [, is the fourth-order tangent stiffness tensor of the rate con-

stitutive law (4); and the hardening parameter H is assumed to be
strictly positive.

2.2. DAMAGE VARIABLES AND CDM CONCEPTS

Comparing equs (2) and (3)2 it appears clear that tensor m cannot
be specified independently, but should derive from the compliance evo-
lution law. By formulating such evolution rule in a form dual to (3)
(Maier and Hueckel, 1979; Ortiz, 1985) we get:

C=AM; m=M:o, (5)

where the PD (fully symmetric) fourth-order tensor M defines the di-
rection of compliance increase. In the general anisotropic case, eqn (5)
requires 21 independent parameters to be specified. However, in view
of reducing the number of material parameters, a generic second-order
damage tensor variable D is introduced:

C=C(Cy,P); D=iM, (6)
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where M is the second-order tensor defining the damage rate direction.
Eqn (6), through eqn (5), allows then to define in cascade both tensors
M and m:

mtio (2 m) o .

As shown by Cowin (1985), the highest type of anisotropic elasticity
than can be generally described through the use of a second-order fab-
ric tensor is orthotropy. In the present case, due to the assumptions
that will be made to characterize eqn (6),, only a restricted form
of orthotropic damage will be described. In CDM the damage-state
relation (6), is usually derived indirectly through a series of steps (see
the schematic representation sketched in Figure 2 and e.g. Carol et
al., 2001a, with references quoted therein). A constitutive law for the
undamaged material is first introduced, which is expressed in terms of
effective stress and strain quantities, o.s and €.g4:

O = IEU ¢ €Eefr a € = CO COefr - (8)

Then, one of the relations between nominal and effective (stress or
strain) quantities is assumed, often in linear form, by introducing a non-
singular fourth-order damage-effect tensor A, e.g. o.s=~A:0 (see also
Lam and Zhang, 1995; Zheng and Betten, 1996; Voyiadjis and Park,
1997), together with a second relation expressed through a so-called
equivalence principle (strain equivalence if e=€.q4, stress equivalence if
o=0 g, Or energy equivalence if o:€/2=0 .4:€.4/2).

STRESS STRAIN
C
NOMINAL o » €
| [E |
A AT
Ay ATy
| CO |
EFFECTIVE O off - €Eeff
o

Figure 2. Relations between effective (undamaged) and nominal (damaged) se-
cant stress/strain laws, and between nominal and effective stress/strain measures:
schematic representation.

The energy equivalence approach (Cordebois and Sidoroff, 1982) is
adopted here, since it allows to derive secant stiffness and compliance
which automatically embed the required major symmetry. The elastic
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energy at any time of the degradation process is then expressed by any
of the following forms:

1 1 1 1
u=—-0 € =—-€ 0 =-0 :C:0 =-¢€ [ :e
2 2 2 2
(9)
1 1 1
= E O €of = E Eeff O off = E aeﬁ:CO:aeﬁ": E eeff:IEU:eeﬁ" .

The following relations are then consistently assumed/obtained:

oux=A:0; €=A":¢€q, (10)
or ) )
€x=A":€; o=A:0.4, (11)
and B B
E=A:Ey:A"; C=A":Co:A, (12)

where A and A are dual quantities (meaning and discussion on dual
quantities are available in Carol et al., 1994), inverse of each other, that
is A:A=A:A=1°, and endowed with minor, but not necessarily major,
symmetries (Carol et al., 2001a).

The damage-effect tensors A, A are expressed in terms of the damage
variables D adopted in the model. In our case we use PD symmetric
second-order tensor variables: the so-called integrity tensor ¢ (Valanis,
1990) and its square root Wz(i)lﬂ, both varying between I and 0, or
their inverses d):al, w:v_v'lqul/Q, varying from I to co. To obtain
product-type symmetrization (Cordebois and Sidoroff, 1982) we adopt
the following (fully symmetric) damage-effect tensors:

A=w@w=~A"'; A= w=A"1. (13)

s
IR

The fact that A and A are indeed inverse of each other may be read
through property (B.3);, Appendix B, and can be checked immediately
by using the tensor contraction (C.6)s, Appendix C, with w-w=I. This
is the reason why, in contrast to other approaches such as sum-type
symmetrization, stress- and strain-based derivations of the damage
model are fully equivalent (Carol et al., 2001a). From eqns (10), (11)
and (13), the following product-type nominal/effective relations are
then obtained:

Oy =W OW, E=WE€zgW,;, O=WOT5W, €g=wew. (14)

Before arriving at the expressions of the secant stiffness and compli-
ance in eqn (12), the undamaged behavior has to be prescribed. In the
present context we deal only with initially isotropic materials, namely,
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in terms of undamaged Lamé’s constant Ay and shear modulus G, and
Young’s modulus Ey and Poisson’s ratio vy:

_ 1 _
Fo— Ay I®I+2GIBI: Co=-2L101+—L1g1, (15)

Eq Ey

where the two sets of isotropic undamaged parameters are linked by
the classical relations

140} E(] EO
Ay = , Go=—""":
7 0+ o) (1= 2p) 7 21+ )
(16)
3Ay +2Gy Ag
Bo=Go 22220 =20
‘ * Ao+ Gy YT + Gy)

Then, by developing the inner products in eqn (12) (see Appendix C),
from eqns (13) and (15) we recover the following simple forms of se-
cant stiffness and compliance which were proposed directly by Valanis
(1990) and have been reconsidered more recently by Zysset and Curnier
(1995); the second-order identity tensor I is simply replaced either by
the integrity tensor ¢ in the stiffness form, or by its inverse ¢ in the
compliance form:

I 1+

E=A ¢Rd+2G dD¢; C:—E—O¢®¢+ o

¢ . (17)

Positive definiteness of E and C is guaranteed by isotropic undamaged
elastic constants belonging to the usual range providing Ey and Cg
PD, namely Ag>—2/3 Gy, Go>0 and Ey>0, —1<ry<1/2. The selected
form of orthotropy is characterized by only 5 parameters, that is two
undamaged isotropic elastic constants and the three principal values
of ¢ or ¢. In the principal axes of damage, the 9 orthotropic material
parameters may be expressed in terms of Young’s and shear moduli
and Poisson’s ratios, which take then the simple forms

EI :(E%E07 1211273;
GIJ:(EI(EJGOa nLr=12;23;3,1; (18)
vrg :ﬂljg, J#I:1,2,3.

bs

In the previously-mentioned ‘extended’ formulation of the model (Carol
et al., 2001c) expressions (17) and (18) are further generalized by intro-
ducing an additional degree of freedom (still obtaining however only a
restricted form of orthotropic damage counting on 6 parameters instead
of 9).



8 E. Rizzi and 1. Carol

2.3. ENERGY DISSIPATION AND PSEUDO-LOGARITHMIC DAMAGE
RATE

For isothermal processes, the (non-negative) rate of energy dissipation
induced by the process of elastic degradation may be expressed as the
difference between the stress power supplied to the material per unit
volume, o:€, and the accumulation rate of (recoverable) elastic energy,
4. By assuming that u=u(o, D), from eqn (9); the dissipation rate
may be rephrased in terms of the so-called thermodynamic force e
conjugate to D:

. . o
d=oc:e—u=-Y°:D>0; Y= -

= — 1

where, following previous CDM literature, the symbol representing the
conjugate force embeds a minus sign to reflect the fact that a positive
dissipation rate at increasing damage actually corresponds to a decrease
of elastic energy.

Now, if either of the four second-order damage tensors ¢, ¢, or
w, w introduced in the previous section is chosen as the underlying
damage variable D, the resulting conjugate force acquires rather in-
volved expressions, which also lack any clear physical meaning. The
same happens for other alternative damage tensors usually considered,
such as higher or fractional powers, logarithm, or other functions of ¢,
¢, or w, w. Although some of these choices have been followed in the
past, the corresponding non-physical conjugate force makes it difficult
to propose loading functions and evolution laws with desired specific
features. A solution to this problem has been recently advanced by
Carol et al. (2001a), by introducing the following pseudo-logarithmic
damage rate L,

. . . .1 .1 .

L=2A:¢p=2wW-¢p -w; ¢:§A:L:§W-L-W, (20)
and considering this as the rate of the damage variable, D=L. By doing
so, the thermodynamic force —Y=-Y¥ conjugate to L becomes just as
simple as (see derivation below):

Y=o (21)
As a counterpart to this advantage, such choice also exhibits some
minor complexities. Although having the simple expression (20), the
rate L does not represent in general an exact differential, i.e. the total
value of L is not defined uniquely, and therefore such total variable L
does not exist. This is however not a serious difficulty, since L is directly
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related to q.ﬁ, eqn (20),, which is indeed an exact differential and can
be integrated. Therefore, while damage rates and evolution laws can be
conceived in terms of L, in real implementation the total damage values
can be updated and stored in terms of ¢ or ¢, which directly enter the
expression of the secant stiffness or compliance, E or C, eqn (17). As
a matter of analogy, the relation between L and ¢? is similar to the
relation between the rate-of-deformation tensor (or stretching tensor)
D and the logarithm of the left strain tensor V in the theory of finite
deformations (Gurtin and Spear, 1983; Hoger, 1986). In fact, for the
special case with no rotation of principal damage directions, L is coaxial
with ¢, ¢, w and w and L becomes the exact rate of the logarithmic
damage tensor In ¢?. Also note that, even if not for the whole tensor,
when the principal axes rotate a similar relation is maintained for the
first invariant of L, which turns out to be the exact differential of
the first invariant of the logarithmic damage tensor. These and other
interesting properties concerning the volumetric/deviatoric split of L
are developed in Carol et al. (2001a).

Going back to the thermodynamic force =Y, eqn (21), its physical
meaning can be interpreted through the following considerations. Since
we have assumed undamaged isotropic elasticity, eqns (8) and (15), the
thermodynamic force is coaxial with both o.s and € g, thus these three
tensors share the same principal axes and their products commute;
the principal values of =Y are then simply given by —Y;=05"¢€5"/2,
1=1,2,3. Also, the first invariant of the thermodynamic force equals
the value of the current elastic energy, namely tr(—Y)=0 g:€.4/2=u,
where the last equality holds due to the underlying assumption of en-
ergy equivalence, eqn (9). Furthermore, the volumetric and deviatoric
parts of =Y, which are associated to the respective components of L in
the dissipation inequality (19),, yield a clear decomposition of effects
between increments of isotropic damage (volumetric component of L)
and anisotropic degradation rates (deviatoric component of L). This
aspect is crucial for the convenient formulation and interpretation of
loading functions and damage evolution rules in the space of thermo-
dynamic forces (Carol et al., 2001a,b). Through eqns (8) and (15), the
thermodynamic force (21) may be expressed as follows, either in terms
of o5 Or €.4:

-y =

1
<_ﬁ T Oey Oeg + A a'efo>§
Ey Ey (22)

1
2
1 2

§< Ao tres € + 2Gy €eq )

Derivation of eqn (21) is indeed quite straight forward in compact
form. In fact, from the definition of the thermodynamic force, eqn (19)y,
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for the force —y=-Y conjugate to L we can write

Ly Jup 0w 09
o 0|y OL’

OL
where the chain rule has been used. Now, from the definition of the
pseudo-log rate, eqn (20);, we have 2 9¢/0L=A=w @ w; the energy u
and its derivative with respect to ¢ at constant o (that is the thermo-
dynamic force —=y¢ conjugate to ¢) can also be calculated by using the
formulas listed in the Appendices:

(23)

U zla:C:a:—i(¢20’)2 +1—|—1/0 tr(o- ¢)*;
ou 7 1+

_y¢: - = 1o0) o + o-0-0.
I RO LRy

Finally, by developing the inner product in (23), and using eqn (14),
to notice that ¢:.o0=tr o.s and to back-substitute o.s in place of o,
expression (22); is precisely recovered, and so is (21).

3. Explicit expression of the tangent stiffness

Now that the elastic-damage model has been briefly presented, we can
move to the compact form derivation of all the quantities involved in
the expression of the tangent stiffness E;, eqn (4).

First of all let us postulate that the current elastic domain is defined
in the space of the thermodynamic forces —y by the following rather
general isotropic hardening/softening form:

F=f(-¥) (D) <0, (25)

where the function f(—)) specifies the shape of the damage domain
and 7(D) is the hardening/softening function, normally expressed in
terms of the underlying damage variable D, the rate of which depends
eventually on A through eqn (6),. The model would then be character-
ized by specific choices of the functions above, according to the material
behavior to be described. Concerning f(—)Y), as a first approach, such
function may be expressed in terms of the invariants of —), as cus-
tomary in isotropic elastic-plasticity, and the surface F(—Y)=0 may
be represented in the space of principal thermodynamic forces (see
Figure 3 later shown). Note that, due to the structure of =Y, eqn (21),
F may be expressed in terms of effective stress and effective strain or,
through eqn (22), in terms of either or them exclusively, which greatly
simplifies the model and its physical interpretation.
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3.1. TERMS n, n:E, AND m, E:m

The gradient of the loading function in stress space, that is the second-
order tensor n, eqn (3)s;, will now be related to the gradient of the
loading function in the conjugate force space, A, through the following
chain rule relation:

ae 2| _ Y

do |, 0(=Y)
where, due to eqns (10), and (13),, the derivative do /00 at con-
stant A (that is w) is given by A=w ® w. From eqn (22);, by using
the derivatives reported in Appendices A and B, eqns (B.8);, (A.23)
and (B.4)2, the derivative 9(—Y)/00c ¢ is also obtained as

. 9()

)\' oo

— . a(_y) . 80’63
A ' ao’eﬁ" ' 30’

A

oY) _ v (o-eg@I—l—traegI@I)
80’63 2E(] - (27)
1+ vy _ _
+ 2E00 (Ueﬁ@l+1@aeﬁ>’

so that, by double contraction of the r.h.s of eqn (27) with w ® w, from
eqn (26) we get

a(— _
(8 y) = — —21;3_] (aeg®w2+traeﬂr w@w)
1 (0 WEW+WE (o).
and finally, by contracting this last expression with N, we arrive at
n=— 2 ((N:aeg)w2+tr0'eg W-N-W)
2 Fy

141 (29)

+ 5 By (W-N-o'eﬁ-w—l-w-o'eﬁ-./\f-w).

Now, from eqns (29) and (17),, the term n:E appearing at the nu-
merator of the expression of the tangent stiffness, eqn (4)s,, can be
evaluated as

n:E=Ag tr(w-n-w) w?+2Gy w?-n-w?, (30)
where Ay and Gy may be expressed in terms of Fy and vy through
eqn (16)1, and

9 _
tr(w-n-w)= QEZO N:a’eﬁ—;—go trN tro.g,
v‘v2-n-v‘v2:—% ((N:aeﬁ)w2+traeﬁw-N-w) (31)
0
l—l-l/(]

5 g (W-N-aeg-vervv-aeg-N-w).
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The degrading strain direction m can be derived from eqn (7) and
takes finally a form dual to (29), where N/ _is simply replaced by M,
namely the direction of the pseudo-log rate L=\ M similarly, the term
E:m at the numerator of (4)9, is obtained just in the same way as
n:E. For the sake of completeness we report below all the relevant
expressions:

m=— 0 (M)W ttros w-M-w)
2 Ey
1+ (32)
+ (w-M-a'eH-W—i—W-a'eﬁ-M-w),
2 Ey
and
m:E= Ay tr(w-m-w) w?+2G; w? - m-w?;
tr(w W)= 2 ag DMt
r(w-m-w)= 1O — —— Ir ro
2E0 eff 2E0 eff 5
y (33)
w2-m-wl=— 3 ((M:aeg)v’\z2+traeg W-M-W)
2 Ey
1
+ +V°<v‘v-M-aeﬁ-w+w-aeﬁ-M-vv>.
2 Ey

3.2. HARDENING PARAMETERS H AND H

We are now in the position to form the term n:EF:m, which makes the
difference between the hardening parameters H and H, eqn (4)g;. From
eqns (30) and (32) we get:

n:E:m=Agtr(%-n-w)tr(w-m-w)+2Go tr(%?-n-w?>-m) , (34)

where the terms ¢r(w-n-w) and tr(w-m-w) are given in eqns (31);
and (33)2, and

1+15\2 1
:( ) 5(tr(N-afg-M)+tr(N'-aeg-M-aeg)>

Ey
vo(4+v
_W W : 0u) (M - 0.5) (35)
+ﬁ trOen [_ 4(1+w) tr(N - o - M)

+1q ((N o) tr M+ (M o) tr N +trogtr(N - M))]
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After some rearrangement of terms in (34) we get the following rather
involved expression of n:[F:m as a function of o4 :

n:kE:m=

_l—l-l/(]
- 2E,

(rW - 0% M) + 11N 0 M- 0.)

]

BT | W o

36
—tro'eﬁ< 4(1=21) tr(N - o M) 0

+1p ((J\f D O)tr M+ (M o) tr.’\f))

+- 2 y2e, ((1 —2ug) tr(N - M) +vg tr N tr M)]
14+

However, this should not be discouraging. In fact, to form H, eqn (4),
the term n:F:m must be added to the part of H arising from the
function f(=)Y) appearing in eqn (25). So, let us first calculate the
hardening parameter H, as defined in eqn (3)s,:

OF or of

H=-2| =2 _ 9\ _g,+H 37

oX|, ox  ox|, T (87)
where the first part of H may be obtained as H,=(9r/JL):M, while
its second part may be expanded through the chain rule as follows
off _of . 6(—3’)‘ (0L _ (=)

T, oy L | o N | M 68

Hy =

So, we still have to evaluate the derivative 9(=Y)/JL at constant o.

This is actually the tricky part of the derivation: the interest of
going through the developments presented here has arisen indeed from
the evaluation of this term. Let us expand it once more by repeated
application of the chain rule:

oY) _ o) | ow
JL ‘a - Ow o OL’ (39)
where, in turns
AY)| oY) dou| | ow _ow 90
oW |y Do = OW |5’ OL  0¢ OL’

Now, of the derivatives above, 0(—Y) /00 .4 is given by eqn (27) and, as
already noticed, 0¢p/0L=w @ w/2. Furthermore, the derivative of the
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square root function, namely dw/0d¢, which was expanded through
spectral representation in Carol et al. (2001a) according to Ogden
(1984), p. 162-163, may actually take the compact form that can be
extracted from Hoger and Carlson (1984), see Appendix B, eqn (B.11).
So, only one term is still missing, which may be evaluated from the
effective/nominal relation (14),:

0 _ _
T = (o W) BI+1B (00 W) | (41)

(o

where relation o.ow=w-o from (14), has been used. Then, by per-
forming the inner products in (40) we get:

o=y v _ _
+1r oo ((aeg-w)@l—i—I@(aeg-w)))
(42)
14+ L — — _
+ (o-eff . W) @aeff + Geﬂ"@ (o-eﬂ" . W)
2 Ey
(o W B+ (0% W)
and
ow 1 _ _
- = - v 2 2
L (wRI+I®Ww) +w?R@w? (43)

+ (T2 + L) waw + T, T 181

where, as defined in Appendix B, eqn (B.7), *I;,"I,,"I; are the prin-
cipal invariants of w, and the Cayley-Hamilton theorem (B.6) applied
to w has been used to eliminate w3="T; w?—"I, w+"I; I. Finally, by
performing a further inner product, from eqns (39), (42) and (43) we
obtain:

6(—3)) 140 1Z0] — —
=— 2 -2t I+1
6L o 4E0 O of ® O it 8E0 T Oenr (o'eﬂ"@ + @aeff)

1+ — _ _

+ EZU (20.4B 0 +0%4RI+1807) (44)
6 - exr

I

oL |,
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where the extra terms, that is

8(_3)) exr
8 (1,1, —Ty) =
L |,
140 — 9 9=
=-5 tra’eg[ (Ot W) QW+ W' R (O - W)
0
— (0 W)W - W (0r- W?)
+v1; ( (O W) RI+ 1R (0o - W?)
— O QW? — W @a’eﬁ)
+1,2 ( owBW+wE o
—(aeﬁ-w)@—@(aeﬁ-w))] (45)
1 _
= (0% W)W + W E (0% w)
0
— (0% - W) @wW —wQ (0% w?)

+W112 ( agggw + W@o’fﬂr

- (% W) ET- 1T (0 w)|

are grouped aside for the reason that will be clear now. To get the
compact form expressions in eqns (44) and (45) the tensor operations
listed in Boxes 1, 2 of Appendix C have been used, and, most im-
portant, the Cayley-Hamilton theorem (B.6) applied to w in the form
"I, w=w?—"T, w+"I, I has been applied once again to eliminate w. As
it can be seen in eqn (44) the expression of d(—Y)/JL at constant o
is surprisingly simple, besides of course the extra terms that do not
cancel out identically.! However, this derivative enters H 7. eqn (38),
through contraction with A" and M.

Now, by assuming coaxiality between N and —Y (and so between
N and o.4), which is granted for an f(—)) expressed in terms of the

! Notice that these extra terms are present also if minor symmetries are not
directly imposed in the derivatives (see Appendix A.2): an expression similar to
eqn (45), with dyadic products ® replaced by ® (Appendix A.1), would still be
obtained through the operations listed in Boxes 3, 4 of Appendix C.
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invariants of =), it can be checked that by double contracting the
derivative with A from left, the contributions of the extra terms to H i
disappear since N and 0. commute:

exr
N . a(_y )
OL
In other words, to get the contribution Hy to the hardening parameter
H, only the simple form given in the first two lines of eqn (44) can be
taken into account. Then, the following compact form of Hy, eqns (37)
and (38), is obtained:

_ oY) |
=N T L‘M

((N o) (M : Gu) +tr o trN -aeg-M)) (47)

~0. (46)

g

4B,y EO

]. + V() 2
- tr(N o M
2E0 lr( o-eﬁ" ) ’
which, in terms of the principal cartesian components of .4, N, and
of M, if now M is also supposed to be coaxial with N and o.q, may
be expressed in another quite appealing form:

3
Hf:_ﬁ > N My (057
5 (48)
+E > NN My + M) o o
J>I=1

Finally, though as said the expression (36) of n:[E:m was rather lengthy,
the faithful reader may be pleased to see that by adding n:E:m to
Hy, the following compact forms of the hardening parameter H at the
denominator of the tangent stiffness, eqn (4)s, are obtained, dual to (47)
and (48), if expressed in terms of €. and Ag, G :2

H=H, + — ((J\f €r) (M : €g) + 7€ tr(N-eeg-M))
+ G() t’r(N'Eeﬂr'M);

(49)

_ Ao +2G 2
s e s
3 (50)
AO eff eH
+ — Z (N]+NJ) (M]-I-MJ) €7 €7
4 J>I=1

2 The reason of duality may be explored through a parallel strain-based derivation
(Carol et al., 1994) of the present model.
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In sum, the tangent stiffness is obtained by substituting in eqn (4)4,
the expressions (30) and (31), and (33) in the numerator, and (49) in
the denominator. The remarkably simple forms obtained in eqns (47),
(48) and (49), (50) should be seen as the main rewards of the following
lengthy, but, through the present compact notation approach, rather
straight forward calculations: they show the potentiality of the pro-
posed formalism and constitute the main result of the present approach
as applied to the constitutive model under consideration.

3.3. ASSOCIATIVE PSEUDO-RANKINE MODEL

From the general expressions just derived, different models can be char-
acterized by defining explicitly their characteristic quantities, namely
r(A\), M and M. If an associative pseudo-Rankine criterion is adopted,
the simple expressions derived by Carol et al. (2001a,b) through a spec-
tral representation of the derivatives are recovered. In fact a pseudo-
Rankine criterion may be basically interpreted as a cut-off condition in
the space of principal conjugate forces (Figure 3).

eff eff

1
—y2:§ 09 €3

Figure 3. Representation of the loading surface in the principal thermodynamic
force space: pseudo-Rankine criterion.

Let us suppose to sit on the fold of the loading surface with normal
N pointing e.g. in the first principal direction t; of the effective quan-
tities: in that case N1=1, No=N3=0. Then, assuming that the model is
associative, that is M=N/, by indicating with wi=w-t; and w;=w-t;
the vector projections of w and w in the principal direction tq, we
recover the following rather simple expressions of the terms entering
the tangent stiffness Ey, eqn (4)9,:
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I 14+vy o
m=n= <—E_0013W2+< Eo U1E+€1E)W1®W1);

(AO e w? 4 (2 Go " + ai"f) w1 ® v_vl) :
1 1 (51)
H=H, — 1 <0iﬁ i + B (0?3)2);

_ 1
H=H,+ Z <O’iﬂr Eiﬁ + (A() + QGU) (Eiﬁ)2> .

4. Conclusions

The compact tensor formalism elaborated here allowed us to obtain
general and rather simple expressions of all the ingredients entering
the tangent stiffness of a class of elastic-damage models. Once specific
forms of the constitutive model are conceived, this should make easier
its final setting and its implementation in computer codes. We believe
that the derivations performed here do not constitute a mere exercise,
rather, the formal tools developed should also help in the formula-
tion of other constitutive models. In fact they allow quasi-automatic
compact-form manipulations which are useful to foresee the choices of
the material formulation that lead to simple and meaningful expressions
of the quantities involved.

It should be clear to the reader that a rather simplified engineering
notation has been used throughout this note, in place of a more rigor-
ous, but perhaps less immediate, mathematical notation. However, an
effort to reconcile the two different terminologies is attempted in the
Appendices.
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Appendix A. Notation and definitions

A.1. TENSOR ALGEBRA

Rephrasing the notation adopted by Del Piero (1979), let V be a three-
dimensional vector space over the reals, Lin the set of all linear map-
pings of V into itself (second-order tensors), LinLin the set of all linear
mappings of Lin into itself (fourth-order tensors). Let also Sym be the
subset of Lin constituted by symmetric second-order tensors, namely

A=A, V AcLin, (A.1)
where T denotes the transpose operation, that is, for any A € Lin
v.-AT-u=u-A-v, YVuveV. (A.2)

Here, symbol ‘-’ denotes either the application of the linear trans-
formation of ¥V in V, or the inner product in V, or, more generally,
the inner product with a single contraction. Component-wise, in a
three-dimensional orthonormal basis

u-A-v:uiAij'Uj, i,j:1,2,3, (A3)

where summation notation convention on repeated indices is implicitly
assumed. Then, A € Sym if A;;=Aj;, 1,7=1,2,3. A is Positive Definite
(PD) if u-A-u>0 for any u#0€ V.

Symbol ‘’ denotes on the other hand either the application of the
linear transformation of Lin in Lin, namely for A, B € Lin, C € LinLin,

B=C:A, Bjj=CiuAu, (A4)
or the inner product in Lin,
A:B:tT(A'BT) :t’)"(AT-B) :Aij Bi]’, YV A/B € Lin, (A5)

or, more generally, the inner product with double contraction, e.g. for
A, B,C e LinLin

C=A:B s Cijkl = Aijrs Brskl . (AG)
In eqn (A.5), tr denotes the trace operator:
trA=1:A, V A€ Lin, (A.7)

where I is the identity in Lin (second-order identity tensor), that
is Iu=u, V u€V, with cartesian components d;;, where d;; is the
Kronecker delta (0;;=1 if i=j, 0;;=0 if i#j).
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The transpose operation also applies to fourth-order tensors, namely
for C € LinLin:

B:C":A=A:C:B, V ABe€elLin. (A.8)

When CT=C, the fourth-order tensor C is said to possess the major
symmetry, so that in terms of cartesian components Cjjp=Cpy;;. C is
PD provided that A:C:A>0 for any A #0 € Lin.

The dyadic product of two vectors or two second-order tensors is
denoted by symbol ® and defined as follows:

(u®v)-z =(v-z)u, VYuv,zeV,

A9
(AB):C=(B:C)A, V A,B,Cc€ Lin, (A.9)

so that, in cartesian components:
(u®v)ij=uivj, (A®B)jju=Ai Bu. (A.10)

Two further outer products may also be introduced, namely ® and
®, defined as

(A®B):C=A-C -B",

vV A,B,C € Lin, (A.11)
(A®B):C=A-C" B",
so that, in cartesian components
(A®B)iju = Air, Bji, (A®B)ijn = Ay Bjy, . (A.12)

Symbol ® corresponds to the dyadic product X introduced by Del
Piero (1979). The symmetrized dyadic product, ®, is also defined as

(AB):C=A-C°-B", V A,B,Cc€ Lin, (A.13)
where C*® € Sym is the symmetric part of C, that is
C = % (C+CT). (A.14)
In other words,
A@B:%(A@BJrA@B), (A.15)

or, in cartesian components
_ 1
(A®B)jju = 3 (Air, Bji+ A Bjy) . (A.16)

Then, given the second-order identity tensor I, the fourth-order identity
tensor [ is defined such that l:A=A, V A € Lin, namely

=131, (A.17)
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and displays only major symmetry. The same happens for the transpo-
sition mapping T (Del Piero, 1979), which is defined such that T:A=AT,
VY A € Lin, that is

T=IxI. (A.18)

A fourth-order tensor A € LinLin is said to possess the first and/or the
second minor symmetry respectively if

T:A=A andfor A:T=A, (A.19)

so that, in cartesian components, A;jr=Ajir and/or A;j=A;j, re-
spectively. Then, the fully symmetric fourth-order identity tensor [°
(denoted with S by Del Piero, 1979, since it defines the linear mapping
of A € Lin into its symmetric part, [*: A=A € Sym) is defined as

1 - 1
IP=5 0+ 1) =181, Ly =5 (dirdji + dudjx) (A.20)

and possesses not only the major but also both the minor symmetries.
[* maps any symmetric second-order tensor A € Sym into itself.

A.2. TENSOR DERIVATIVES

Definition of the derivatives of tensor functions may be found e.g. in
Gurtin (1981), Chapter II, and Silhavy (1997), Chapter 1. Rephrasing
once more Del Piero (1979), the function f(A) is said to be differentiable
at A € Lin if there exists a tensor 0f(A)/JA such that

Of (A)
0A
for any H in the neighborhood of 0 € Lin with limgy_,o o(H)/|H|=0,
where |H|=vH:H. The value of 0f(A)/0A on H is (0f(A)/0A):H.
However, Of (A)/0A is said to be the derivative of f(A) at A € Lin, so
that any reference to the argument H can be omitted (Del Piero, 1979,

eqn (5.4), p. 251).
Then, considering e.g. f(A)=A, for any A € Lin, the value of 0A /OA
on H € Lin is H, namely
0A
A =
since this derivative defines the identity transformation of Lin in Lin.
However, if A € Sym, the derivative should be expressed by the identity

f(A+H) =f(A)+ :H + o(H) (A.21)

I, Ae€Lin, (A.22)

mapping of Sym in Sym, that is [°:3
0A
— =0 A . A2
oA 1 A€Sym (A.23)

3 This dstinction is not really crucial, since l:A=[1*:A=A if A € Sym, if not for
the fact that [® automatically embeds the minor symmetries.
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Appendix B. Useful tensor derivatives

Derivatives of general tensor functions may be expanded through spec-
tral representation following Ogden (1984), p. 162-163, Carlson and
Hoger (1986b), Hoger (1986). In such cases, however, one may have
to deal with the problem of repeated eigenvalues. Instead, in some
simple cases as the ones reported below, the derivatives may be found in
compact form by direct differentiation. In particular, this is the notable
case of the derivative of the square root function, of primary concern
in the paper, where a compact polynomial expression with invariant
coefficients is directly available from Hoger and Carlson (1984).

B.1. DERIVATIVES OF THE INVERSE AND SQUARE

Let A be an invertible second-order tensor € Lin. Then, differentiation
of the identity A-A™'=I leads to (De} Piero, 1979; Gurtin, 1981, p. 28;
Marsden and Hughes, 1983, p. 222; Silhavy, 1997, p. 11):

OA™!
0A

whereas, if A is symmetric, one should write

=—A'®AT, AcLin, (B.1)

OA™!
0A

so that, from an algebraic point of view, for any invertible A € Lin:

=—-A'®A!, AcsSym, (B.2)

(ABAT)'=AT®AT, (ABA)'=A"'®AT. (B.3)

Considering now the derivative of f (A)=A? one also gets (Del Piero,
1979; Gurtin, 1981, p. 22, Silhavy, 1997, p. 11):

A? _ _
a—:A®I+I®AT, A € Lin,
0A
(B.4)
OA’ _ ABI+1BA, Acs
A T TETTIES v
More generally, for any positive integer n (Silhavy, 1997, p. 11):
OA™" k-1 .
=) AFZATT AcL
9A Z s € Lin,
(B.5)
OA™ _
= A’c Akl A :
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B.2. DERIVATIVES OF THE PRINCIPAL INVARIANTS

Now, let A be a second-order tensor € Lin. The Cayley-Hamilton the-
orem applied to A poses

A3 A+ LA -";T1=0, (B.6)

where *I;, *I,, *I; are the principal invariants of A, namely (see e.g.
Marsden and Hughes, 1983, p. 220-221):

1
o= (tr* A —tr A7), (B.7)

1 1 1
AMy=det A = 3 tr A® + 5 trd A — 5 T A tr A?

The derivatives of the principal invariants of A are expressed by
the following second-order tensors (Carlson and Hoger, 1986a; Silhavy,
1997, p. 12):

M,
— =1
0A '
aAI2 A T
— — B.8
=L I-AT, (B.8)
0"l
a—-Agz(AQ—AII A+AIQ I)T .

Also, if the second-order tensor A is invertible, the following expres-
sions may be recalled (see Marsden and Hughes, 1983, p. 221; Carlson
and Hoger, 1986a; Silhavy, 1997, p. 12):

A, =det A tr A7t (B.9)
and

0,

OA

—detA AT, (B.10)
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B.3. DERIVATIVE OF THE SQUARE ROOT

Finally, consider the square root function B=f(A)=A'/?, where A and
B are positive definite second-order tensors € Sym. Considering the
derivative of the inverse function A (B) it has been seen from eqn (B.4)
that 9B2/0B=B ® I+1® B. Then, from an algebraic point of view, the
inverse of this fourth-order tensor should express the derivative of the
square root function B(A), which exists (Gurtin, 1981, p. 23), and
has been obtained by Hoger and Carlson (1984) by solving the tensor
equation arising from the direct differentiation of the identity B-B=A.:

0B _ 1
a—A_(B@IJrlI@B)

= "I, B*®@ B?
2 (L, ") | S S
~1,> (B’@B + B®B?)
+(°I,"I, - ") (B*®I+1I®B?) (B.11)

+(*1,> +°,) B®B

~"I,*"I, (B®I1+18B)
+ (B112 °Ly + "I, (°1, °I, — B13)) 181 ] :
Notice that "I (°I; ®I,—"I;)>0 since second-order tensor B € Sym is
positive definite:
1
=detB (trB trB™! —1) (B.12)
:B%(BQ—FB:;) -+ B22(B1 +B3) -+ B32(B1 +B2) —+ 2BlB2B3 s
=(B1 + B2) (B2 + B3) (Bs + By) ,

where By, By, B3 are the (real and positive) principal values of B
that can be obtained from the characteristic equation associated to the
Cayley-Hamilton theorem (B.6) applied to B.

Appendix C. Table of tensor algebra operations

In the following four boxes we list two series of tensor algebra opera-
tions; the first involves the symmetrized dyadic product ® , the second
concerns the dyadic product ® . Most of the algebraic operations have
been used for the derivations presented in text; the other ones are listed
for the sake of completeness. Tensors A, B, C and D are all second-
order tensors € Lin, while I is the identity in Lin. The symbols used
are defined in Appendix A.1.
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Box 1. Tensor operations with outer product ® .

C.(ABB) =(C-A)BB
(A@B)~D:%(A@(B-D)+(A-D)@B) 1)
C-(ABB) D:%((C~A)®(B~D)+(C-A~D)@B)

®B+B®A) =(C-A)8B+(C-B)8A
®B+BEA) =%(A®(B D)+ (B-D)®A
+B@(A-D)+(A-D)gB) (C2)

C:(A®B) =(AT-C-B)
(A®B):D=A.D*-B" (C.3)
C:(A®B):D=1tr(C"-A-D*-B")
C:(ABB+B®A) =2(AT-C°.B)
(AEB+B8A):D=2(A-D* B")’ (C4)
C:(ABB+B®A):D=2#(C*-A-D*.B7)
(AGB) : (C&D) =
-, (a-0@® D)+(1 D)E(®B-0)
(AEB+BBA) : (CED) =
=;(a-08@D+EDEAC
+ (B-C)8(A-D)+(A-D)&(B-C))

- (A-C)B(B-D)+(B-D)E(A-0)
(B-C)8(A-D)+(A-D)&(B-C)
(AEB):(CEC)=(A-C)8(B-O)
(ABA):(CBC)=(A-O)B(A-C) (C6)
(AEB+BBA): (CEC)=(A-C)B(B-C) +(B-C)B(A-C)
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Box 2. Tensor operations with outer product ® involving the identity I.

Cc.(I18I) =C3&I
(1@1)-D=%(1®D+D@I) (C.7)
C. (18I D:%(C@D+(C-D)®I)
C. (ARI+IZA) =(C-A)BI+CBA

14184).D_ L

(ABI+18A)-D 2(A®D+D@A

+ I@(A-D)+(A~D)@I) (C.8)
C-(A@H—I@A)-D=%((C-A)®D+(C-D)@A
+ C@(A-D)+(C~A~D)@I)

C:(I®I) =C?
(I®I): D=D* (C.9)
C:(I®):D=C:D*=C*:D
C:(ARI+I®A) =2(AT-C5)°=AT.-C°+ C*-A

(AQI+I®A):D=2(A -Df)*=A -D*+ D*- A" (C.10)
C:(ARI+I®A):D=2¢r(C*- A-Df)

(AQI+I®A): (C®D)=

= %((A-C)@D+D®(A.C)+C§(A.D)+(A_D)EC) (C.11)

(ABI+I®A): (CED+D&C) =
= (A-C)8D+D®(A-C)+C®(A-D)+(A-D)

1®
@]

27
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Box 3. Tensor operations with outer product ® .

C.-(A®B) =(C-A)®B

(A®B)-D=A®(B-D) (C.13)

C-(A®B)-D=(C-A)®(B-D)
C.-(ABB+B®A) =(C-A)®B+(C-B)TA
(ARB+B®A)-D=AQ(B-D)+B®(A-D) (C.14)
C-(A®BB+B®A)-D=(C-A)&(B-D)+(C-B)®(A-D)

C:(A®B) =AT.-C-B

(A®B):D=A-D BT (C.15)

C:(A®B):D=1#(C"-A-D-BT)
C:(A®BB+B®A) = A™C-B +B”-C-A
(ARB+BQA): D= A-D-B"+B -D-AT (C.16)

C:(A®B+B®A):D=#(C" A -D-B"+ C™-B-D-A")

(A®B) : (C&D)=(A-C)® (B D)

(A®B+B®A) : (CED)=(A-C)&(B-D)+(B-C)® (A -D)

(C.17)
(ABB+B®A) : (CED+D®EC) =
=(A-C)8(B-D)+(B-D)B(A-C)
+(B-C)®(A-D)+(A-D)®(B-C)
(A®B): (C®C)=(A-C)&(B-C)
(ABA):(CEC)=(A-C)B(A-C) (C.18)

(ABB+B®A):(C®C)=(A-C)®(B-C)+(B-C)B(A-C)
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Box 4. Tensor operations with outer product ® involving the identity I.

C-(I®I) =C@%I
(I81)-D=1I8D (C.19)
C-(I®I)-D=C®D
C-(ABI+I®A) =(C-A)BI+CBA
(ARI+I®A)-D=A®D+I3(A-D) (C.20)

C-(ABI+I®A)-D=(C-A)8D+C&(A-D)

C:(IQI) =C
(I®I):D=D (C.21)
C:(I®I):D=C:D
C:(ARI+IRA) = ATC+C -A
(ARI+I®A):D= A.D+D AT (C.22)
C:(AQI+IQA):D=¢(C"™-A-D+C"-D-A")
(I®I): (C®D)=C®D
(ARI+I®A): (C®D)=(A-C)®3D+C®(A-D) (©.23)

(ABRI+IB®A): (CRD+D®C) =
=(A-C)8D+D®(A-C)+CB(A-D)+(A-D)BC

(I8I): (CB®C)=C&C

(ARI+IRA): (CRC)=(A-C)®C+CQ®(A-Q) 4
(ARI+IQA): (CRI+I®C) =

—(A-C)BI+1I8(A-C)+ CBA+AGC




