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1 Introduction

Stemming from the pioneering works by Kachanov (1958) and Rabotnov (1969), which
introduced the original concepts of reduction of stress-carrying area and corresponding
effective stress acting on the intact material between microcracks, Continuum Damage
Mechanics (CDM) has reached nowadays a rather mature stage of development. Among
other features, this includes the modeling of anisotropic elastic stiffness degradation in
quasi-brittle materials such as concrete and rocks. These formulations are based on dam-
age tensors of various orders (see the extensive reference lists provided e.g. in Zheng and
Betten, 1996; Carol et al., 1994, 2001a,b; and in the relevant monographs on the subject,
e.g. Lemaitre, 1992; Krajcinovic, 1995).

In a sequence of papers, the present authors have contributed to the topic with a
proposal of a unified theoretical framework of elastic stiffness degradation and damage
based on a loading surface (Carol et al., 1994), and with the formulation of constitu-
tive models for anisotropic stiffness degradation in initially-isotropic materials (Carol et
al., 2001a,b,c; Rizzi and Carol, 2002). The latter models are characterized by second-
order symmetric damage tensor variables with evolution laws expressed in terms of a
(non-holonomic) pseudo-logarithmic damage rate. The resulting secant elastic relations
correspond to a restricted form of orthotropic material behavior (Valanis, 1990; Zysset
and Curnier, 1995). Along the course of these investigations the request of seeking more
general forms of orthotropic elastic degradation, together with the desire of preserving
duality between alternative compliance- and stiffness-based derivations of the constitutive
equations spontaneously arose.

In this respect, a major step in deriving the final secant compliance and stiffness
relations of the elastic-damage model is the introduction of the so-called fourth-order
damage-effect tensors, which, based on the underlying damage tensor variables, define
the linear transformations between nominal and effective stress and strain quantities.
Such typical approach of CDM is very convenient, at least from a methodological point of
view, since it provides a modular structure of the constitutive equations. This is not only
useful to derive and interpret the final secant relations of the pure elastic-damage model,
but also makes eventually possible to include different material couplings and to enlarge
the scope of the constitutive formulation to describe more realistic or different material
behaviors, as e.g. elastoplastic, viscoelastic, initially anisotropic, etc.

Different damage-effect tensors have been proposed in the literature by Murakami and
Ohno (1980), Cordebois and Sidoroff (1982), Betten (1983) and Lu and Chow (1990) (a
summary of the different proposals on the subject is available e.g. in Lam and Zhang, 1995;
Zheng and Betten, 1996; Voyiadjis and Park, 1997). The above-quoted formulations of
the present authors also embed additional proposals of such damage-effect tensors. The
present paper attempts a generalization of these previous propositions by providing a
solution set of new orthotropic damage-effect tensors possessing dual inverses with com-
plementary structures in the sense specified in the next section.

The main CDM procedures conceived to deduce the secant relations of an elastic-
damage model are recalled first in Section 2. There, the definition of the damage-effect
tensors is made and interpreted on the light of the properties sought in the present paper.
Section 3 introduces and discusses the general orthotropic representations of fourth-order



secant compliance and stiffness tensors, and damage-effect tensors, in terms of ‘shear-like’
and ‘non-shear’ coefficients and corresponding tensor addends. The problem statement is
precisely addressed in Section 3.1, where the known existing solutions are listed as well.
Section 4 constitutes the core of the paper and outlines the solution set of damage-effect
tensors with complementary structures: Section 4.1 presents first solutions that can be
directly guessed from the existing ones; Section 4.2 addresses the general problem, which
is solved for the three ‘shear-like’ coefficients in Section 4.3; Section 4.4 collects new
solution instances involving subsets of the ‘non-shear’ coefficients. The way these latter
solutions are derived is commented in Section 5, which makes use of multiplication tables
(Section 5.1) and of Sherman-Morrison’s formulas (Section 5.2). A few final remarks and
perspectives of the present study are outlined in the closing section.

For the ease of reading, important technical notions that are central to the derivations
developed throughout the paper are collected in Appendices: Appendix A presents the
details of the orthotropic representations, including the expressions of the fourth-order
tensor components in matrix form and of the relevant coefficients; Appendix B gathers
Rivlin’s tensorial identities; Appendix C gives Sherman-Morrison’s inversion formulas for
one and two rank-one updates of a given non-singular fourth-order tensor; Appendix D
includes an example of the multiplication tables that can be used to generate instances
of the solution set. Finally, Appendix E reports the lengthy expressions of some of the
factors entering Solution (25), that is the more general solution instance found here, which
lacks only two coefficients from the full orthotropic representation (one ‘shear-like’ and the
other ‘non-shear’). These expressions are given here not only for the sake of completeness
but also because they help to show how the complete solution of the problem at hand
turns out to be rather involved to be expressed in closed form.

Notation. Compact or index tensor notation is used throughout. Intrinsic summation
convention on repeated indices is not adopted in the paper. Vectors and second-order
tensors are identified by boldface characters, whereas fourth-order tensors are denoted
by blackboard-bold fonts (e.g. A,C,E). Superscript " indicates the transpose opera-
tion (on first and second couple of indices for fourth-order tensors, i.e. componentwise
(A")ijki=Agi;), while ‘tr’ is the trace operator. Symbols ‘-’ and ‘" denote the inner
products with single and double contraction. The dyadic product is indicated with ‘®’,
whereas ‘® ’ denotes the symmetrized outer product defined as (A @ B):C=A-C*-B", for
any arbitrary second-order tensors A, B, C, where C*=(C+C")/2 is the symmetric part
of C; componentwise (A ® B);ju=(AixBji+AuBj;)/2. T and I’=I&1T are respectively the
second-order and symmetric fourth-order identity tensors. For more detailed definitions
see e.g. Rizzi and Carol (2002), Appendix A.

2 Secant relations of elastic damage

In the simplest setting of pure elastic stiffness degradation, the material behavior can be
characterized by a secant linear hyper-elastic constitutive law. At any state of the damage
process, the nominal (small) strain tensor € and stress tensor o are related by

e=C(Cy,D):0; o==LEL,D):e€, (1)



where C and E are the current positive-definite fourth-order compliance and stiffness
tensors, respectively, which are endowed with both major and minor symmetries and are

the inverse of each other, i.e. C:E=E:C=[*. Compliance C(Cy, D) and stiffness E(Eo, D)
are functions of generally-defined damage variables D, or of dual damage variables D,
which may be scalar, vector- or tensor-valued, and, obviously, of the initial values Cgy, [y
of compliance and stiffness in the undamaged state. In the present paper restriction is
made to initially-isotropic materials, namely, in terms of undamaged Young’s modulus
Ey and Poisson’s ratio vy, or Lamé’s constant Ay and shear modulus Gy:

1 _ _
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Undamaged bulk modulus Kj could also be used in eqn (2) instead of Lamé’s constant
Ao by employing the classical relations 3K¢=3A¢+2Go=FE,/(1—2u4).

In CDM, the damage-state relations C=C(Cy, D) and E=E(E,, D) are usually derived
indirectly through a series of conceptual steps (see the references quoted in the Intro-
duction and e.g. the sketches drawn in Rizzi and Carol, 2002; Carol et al., 2001c). A
constitutive law for the undamaged material is introduced first in terms of initial moduli
and relates effective strain and stress quantities, €.¢ and o.g, namely strains and stresses
acting at the level of the intact material between microcracks: €.5=Cq:0cf, Ter=Eo:€cs-
Then, two further links are prescribed: one of the relations between nominal and effec-
tive (stress or strain) quantities is assumed, in linear form, by introducing a non-singular
fourth-order damage-effect tensor expressed in terms of the damage variables, e.g. A(D)
in the stress relation o.s=A(D):0; a second relation is postulated by means of an ‘equiv-
alence principle’: ‘strain equivalence’ if eé=€.s (Lemaitre and Chaboche, 1978), ‘stress
equivalence’ if o=0.s (Simo and Ju, 1987), or ‘energy equivalence’ if o:€/2=0cq:€cir/2
(Cordebois and Sidoroff, 1982). The ‘energy equivalence’ approach is adopted here, since
it allows to derive secant stiffness and compliance satisfying directly the hyper-elastic
requirement of major symmetry. The following nominal/effective relations are then con-
sistently assumed/obtained:

o =A(D):o, €e=A"(D):€qg; or exg=~A(D):e, od=A(D):0ow, (3)
and the hyperelastic compliance and stiffness are expressed by the symmetric forms:
C(Cy,D)=A"(D):Co: A(D); E(Co,D)=A(D):[Ey: A" (D), (4)

where A (D)=A"' (D) and A (D)=A"' (D) are dual non-singular fourth-order damage-effect
tensors, inverse of each other, and endowed with minor symmetries (but not necessarily
major symmetry). The damage-effect tensors A(D) and A(D) are the main concern of
the derivations that follow in the paper. Notice from eqns (3), (4) that A(D) and A(D)
play the same role in transforming nominal and effective stresses and strains, and initial
compliance and stiffness, except for a transpose operation.

Concerning the dual underlying damage variables D and D, in the present paper
positive-definite symmetric second-order tensor variables are assumed, namely the in-
tegrity tensor ¢, varying between I and 0 (Valanis, 1990), or its dual inverse integrity
variable tb:(}ﬁ_l, with complementary variation between I and oco. Also, for the ease of
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representation, the square-root tensors W:\/;, W:ﬁ are as well employed in notation.
Since the damage-effect tensors A(¢) and A(¢) can be postulated independently from ei-
ther ¢ or ¢ (or either w or w), they might be respectively given independent polynomial
orthotropic representations in terms of ¢ or in terms of ¢. Then, we are interested in seek-
ing particular instances of A(¢) and A(¢) with the property that their inverses become the
transposes of the tensors obtained by replacing ¢ with its inverse ¢ (or viceversa), and by
substituting the scalar coefficients pre-multiplying the various tensor addends of the or-
thotropic representation with dual (to be determined) ones. The resulting damage-effect
tensors are said then to possess (dual) inverses with complementary structures.

3 Fourth-order tensors in orthotropic damage

General expressions of orthotropic fourth-order tensors can be deduced by algebraic de-
composition (e.g. Walpole, 1984) or through representation theorems (e.g. Boehler, 1987).
Taking e.g. the latter approach, the secant linear hyperelastic compliance C can be derived
by double differentiation with respect to o of an orthotropic quadratic complementary
energy function of o, namely an isotropic function of o and of the relevant orthotropic
structural tensors. In the present case the role of structural tensors is played by the
second-order inverse integrity tensor ¢. Then, the complementary energy function is
expressed in terms of the following set of ten irreducibile invariants: treo, treo?, tro?,
tr g, tr ¢, tr @°, tr (o), tr (62-¢), tr (o-¢?), tr (o-¢)?. Following the ordering adopted
by Zysset and Curnier (1995) in their formulation of orthotropic fabric elasticity, the
general orthotropic damaged compliance can then be expressed by the nine-coefficients
polynomial expansion:

C=cIQI+IBI+c¢pRp+c (pRI+IR @) + c5 P°@ P>+ 5 P D P
+ e (PRTI+IR @)+ (P*R D+ PR D) + ¢ (P*°RT+I® @),

where the nine scalar coefficients ¢;, 1=1-9, are any arbitrary polynomial functions of the
three principal invariants of ¢.

Notice that only the three terms embedding symmetrized dyadic products in rep-
resentation (5) (‘shear-like’ coefficients cq, ¢4, ¢g) affect the shear moduli entering the
lower three diagonal entries in a 6x6 matrix representation of the compliance tensor in
the principal axes of damage (see Appendix A). The same terms also affect the upper
three diagonal entries of the same matrix representation. The six supplemental rank-
one updates given by the dyadic product addends (remaining ‘non-shear’ coefficients
c1, C3, Cs, C7, Cg, Cg) only affect instead the upper-left 3x3 submatrix representation of C.
Properties of tensors differing by rank-one updates have been studied in different mechan-
ical contexts, e.g. by Curnier et al. (1995), in inspecting the constitutive elastic properties
of bimodular materials, by Loret et al. (2001), in exploring the relations between drained
and undrained moduli in anisotropic poroelasticity, and by Rizzi et al. (1996), in conjunc-
tion with the study of strain localization phenomena in multi-dissipative solids.

Furthermore, note that, as a result of representation theorems, only powers of ¢ up to
the second degree enter eqn (5). Indeed, higher powers can be reduced by the application



of the Cayley-Hamilton theorem applied to ¢. Also, notice that, as compared to the rank-
one terms including standard dyadic products ‘®’, the three symmetrized dyadic product
addends that would contain ¢, i.e. (¢*QIH+I® ¢?), (¢°Q Pp+0 R ¢*) and PR p* are
missing in representation (5). In fact, the latter terms are not independent from the
tensor terms already included in eqn (5), since they can be reduced, respectively, through
the use of Rivlin’s tensorial identities (B.1), (B.2), (B.3), Appendix B. Actually, through
Rivlin’s tensorial identities, the three missing terms span together all the tensor addends
of representation (5).

Indeed, a crucial factor in a formal comparison of the possible different orthotropic
representations is the list of irreducible invariants adopted in the source functional and
the resulting tensorial terms. As pointed out by Zysset and Curnier (1995) and Lam and
Zhang (1995), the adoption followed here of the invariant tr (o-¢)? in place of the more
commonly used tr (a?-¢*) (see e.g. Cowin, 1985; Zheng and Betten, 1996), leads to the
term ¢ ® ¢ in place of (¢°@I+IR ¢*). The two options are equivalent, since the two
invariants are related by an identity involving the remaining invariants of the representa-
tion (Boehler, 1987; Lam and Zhang, 1995, eqn (3.2)) and the resulting tensorial terms
are related by Rivlin’s tensorial identity (B.1). However, the term ¢ ® ¢ seems far more
convenient than the term (¢*@I+I® ¢*) for the analytical developments in the dual
compliance- and stiffness-based derivations, since it possesses a very convenient inverse,
i.e. simply (¢ ¢)'=(¢'® ¢ ')=@B® ¢, while the inverse of (¢*’RI+I® ¢*) may be
expressed by a more involved relation that can be adapted from that of (¢ @I+I® @)™
(Hoger and Carlson, 1984; Rosati, 2000; Rizzi and Carol, 2002, Appendix A). On the light
of these remarks, orthotropic stiffness representations of fabric elasticity by Cowin (1985)
and Zysset and Curnier (1995) can be considered to be fully equivalent. Also, the formu-
lation of elastic damage proposed by Valanis (1990) and the equivalent specific instance
of fabric elasticity presented by Zysset and Curnier (1995) turn out to be particular cases
of the Cowin (1985) representation.

An orthotropic fourth-order representation similar to that of eqn (5) also applies
to the general symmetric damage-effect tensor apt to represent orthotropic damage in
initially-isotropic materials, namely an isotropic tensor-valued function of ¢ (Lam and
Zhang, 1995). However, to allow broader generality (which is very relevant to the present
context for the solution set of the problem under consideration), the following non-
symmetric orthotropic polynomial form of damage-effect tensor in terms of 12 scalar
coefficients is adopted as in Zheng and Betten (1996) (here within the above-commented
preferential choice of the tensorial term w ® w in place of w? ® I4+1® w?):

A= I®I+aI@l+azwdw+a, (WRI+IRW)+ a5 w2 QW2+ ag wWRW

(6)

+anwRI+anl®w+ag W2OW +ags WQ W2+ ag; W2R I+ agy I ® w2,

where, to link representations (5) and (6) through eqn (4a), the square-root inverse in-
tegrity tensor w=4/¢ has been adopted in A, and the 12 coefficients a;, i=1-6; a;1, a2,
1=T7-9, are also any arbitrary polynomial functions of the three principal invariants of w.
In the symmetric case the 12 coefficients reduce to 9, simply by posing a;;=a;,2=a;, i=7-9.
Walpole’s (1984) matrix representation of tensor A in the principle axes of damage is
given in Appendix A, eqns (A.7) and (A.4)-(A.6). Consistency between eqns (6) and (5)



through eqn (4a) is apparent for initially-isotropic materials, since Cy, eqn (2a), does not
embed separate structural tensors: pre-multiplication with AT and post-multiplication
with A of terms I®QT and I®I in (2a) span the same tensor products space. The relations
between alternative representations of C and A in terms of either ¢ or w can be obtained
through the isotropic functions ¢=w? and w=+/¢, where (Ting, 1985, eqn (2.7)):

W—\/;—m(—d’ + (" ="L) ¢+ 131)7 (7)

and “I,,"1,,"I; are the classical three principal invariants of w as defined in Appendix B.

A natural constraint on representation (6) arises from the intrinsic meaning of the
damage-effect tensor in eqns (3a,b): in the absence of damage (¢p=w=I), A(I) must coin-
cide with the symmetric identity [*=I ® I, namely when all the coefficients are evaluated
in I:

[CLQ + 20,4 + GG](I) =1 ) [(11 + as + as + ary + a9 + asgy + ago + Qg1 + (192](]:) = 0 . (8)

Representations similar to (5) and (6) hold as well for the damaged stiffness E and the
damage-effect tensor A in terms of the integrity variable ¢ and its square root W, and of
dual nine coefficients ¢;, ==1-9, and 12 coefficients a;, i=1-6; a;1, a;2, 1=7-9. The natural
constraint (8) at zero damage must also hold for the coefficients with bars pertinent to
the representation of A. Alternative orthotropic representations and links to the present
ones are provided in Appendix A.

3.1 Problem statement and known solutions

Considering now representations (5), (6) for C and A, and dual ones for E and A, we
come precisely to the point under consideration here of seeking particular instances of
such general representations (possibly with a limited number of convenient tensor terms)
that correspond to each other through an inversion operation spanning the same set
of tensor terms, within a transpose operation of non-symmetric addends attached to
arm, Qro; Qg1, Ago. Qg1 Ggo in A, and dual ones with bars in A. In other words, while for the
symmetric terms the sought correspondence should be direct, e.g. a; should mirror to a;,
1=1-6, for the non-symmetric ones, the correspondence in dual complementary structures
should go through the links between a;; and a;3, and conversely between a;» and a;,
1=7-9.

Before undergoing this search, let us remark that there are at least three known par-
ticular instances of orthotropic structures (5), (6) (and dual ones) that fall within the
sought solution set. The first two cases may be clearly seen as the following apparent
symmetric cases of the general representations:

Solution (0.1). The isotropic case in which only the two-coefficients sets (¢, ¢2) and
(e1,e3) are considered in the representations of C and E, which corresponds to maintain
only the two-coefficients sets (aq, as) and (ag, as) in the expansions of A and A:

A=aI®l+aI®l; A=alI®l+a IRl, 9)



with
1 aq
ag = — , ag = .
2 a9 ! a9 (3(11 + az)

(10)
This leads to a general form of isotropic damage based on two independent scalar damage
variables, if the two coefficient functions a, as are independent, or to a restricted form of
isotropic damage based on a single scalar damage variable, if the two coefficient functions

a1, ay are linked to each other (e.g. Ju, 1990);

Solution (0.2). The Valanis-type compliance and stiffness (Valanis, 1990; Zysset and
Curnier, 1995) that can be respectively obtained by replacing the identity I in the orig-
inal isotropic compliance and stiffness (2) with the inverse integrity and integrity ten-
sors ¢ and ¢. This corresponds to keep only terms from two-coefficients sets (cs, cg)
and (es, eg) in the compliance and stiffness representations of C and E in terms of ¢, ¢,
namely C=c3 pQp+c5 ¢ @ ¢, E=e3 pRp+e5 d @ ¢ (and only terms from five-coefficients
sets (cs, ¢4, c5,C6,07) and (es, ey, €5, €6, €7) in the w, W expansions), and is recovered by
guarding only single coefficients ag and ag in the damage-effect tensors representations of
A and A:

A=agwRW; A=agWRW, (11)

with .
g = — . 12
e g (12)

Taking ag=a¢=1, i.e. ‘basic’ damage-effect tensors Abas:\/; @/@ and l\bas:\/g @\/3
(Carol et al., 2001a,b), Valanis-type secant relations are indeed obtained from equs (2), (4).
This case corresponds to a restricted form of orthotropic material symmetry (Bigoni and
Loret, 1999, Appendix A; see also Appendix A at the end of this paper).

Solution (0.8). A third instance of the sought solution set can be derived as an ‘ex-
tended’ version of the ‘basic’ Valanis-damage case (Carol et al., 2001c) by considering
a non-symmetric damage-effect tensor A, eqn (6), with only two-coefficients set (ag, ags)
and a dual damage-effect tensor A with only complementary two-coefficients set (g, dg1 ):

A=agwWRW+apl@w?;, A=aWRW+ady W I, (13)
with )
_ _ Q92
6 ag ’ o1 ag (3(192 + aﬁ) ( )

From eqns (13), (14) it is immediate to check that A:A=A:A=0°. Damage-effect ten-
sors (13) give a clear example of the type of solutions that are searched here. The arising
secant compliance and stiffness still belong to the above-mentioned Valanis-type structure
embedding only two-coefficients sets (c3, cg) and (e, eg) in the tensor representations in
terms of ¢, ¢.

Moreover, a formulation of elastic damage based on volumetric/deviatoric decompo-
sition can be obtained by taking ag=¢", agy=(¢""—¢")/3, and Gg=¢", Gg1=(d""—¢")/3,
namely (Carol et al., 2001c):

A:qﬁ"\/g@\/%WI@qs; A:q‘ﬁﬂﬁ@ﬁ w&&&, (15)
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where ¢ and ¢ are the 1/3 powers of the determinants of ¢ and ¢=¢ ", ¢=(det ¢)'/?,
p=(det ¢)'/3, and 7 is a power constant with values between —1 and 1. The damage-
effect tensors (15) can also be conveniently decomposed in product form in isotropic and
anisotropic parts, e.g. A=Aio:Apas, Where Aps=+/@ ® /@ is the ‘basic’ damage-effect
tensor leading to the Valanis-type secant compliance, and Ao is the isotropic tensor
Aiso=0 " Py+¢" Pp, where Py=I®I/3 and Pp=1*-1I®I/3 are the classical fourth-order
idempotent volumetric and deviatoric projection operators, respectively. This leads to the
following compliance and stiffness expressions that still embed the Valanis-type structure,

C= E=A¢R¢+2G B9, (16)

but that include undamaged elastic parameters replaced by degraded ones with hats
determined as follows: K= -¢*" K= ¢2K G=¢"21 Gy=¢*G, and similarly for parameters
3A=3K—-2G, E=9KG/(3K+@), 20=(3K—2G)/(3K+@). Notice that bulk and shear
moduli K , G differ from the real current secant moduli K=¢ 2" K, and G=¢ 2041 G,
The assumptlon above corresponds to assign different weights to bulk and shear damage
components according to the values taken for constant 7 (n=1: pure deviatoric damage,
—1<n<1: mixed deviatoric/volumetric damage; n=—1: pure volumetric damage; see
Carol et al., 2001c for the details). Eqns (15), (16) include as particular cases both
the instances previously mentioned: Solution (0.1) when the damage tensors become
spherical, ¢=¢ I and ¢p=¢ 1, since moduli & and G come to coincide with the current
bulk and shear moduli K and G, and similarly for the other elastic material parameters,
so that an isotropic damage model with linear links between bulk and shear moduli
degradations is recovered; Solution (0.2) for n=0, since K=K,, G=G,, and similarly
for the other parameters, so that the ‘basic’ orthotropic Valanis-damage secant relations
embedding undamaged elastic parameters are retrieved.

4 Solution set of damage-effect tensors with comple-
mentary structures

4.1 Additional foreseen solutions

Before undergoing a more general treatment, let us remark first that ten additional
instances (nine symmetric and one non-symmetric) of the sought solution set of dual
damage-effect tensors with complementary structures can be already advanced at the
present stage by guess and a posteriori check, starting right-away from the known solu-
tions reported above:

Solution (1). By taking the symmetric Valanis-type structure of compliance and stiff-
ness directly for the damage-effect tensors, namely by keeping only the complementary
two-coefficients sets (ag, a3) and (ag, a3) in A and A:

A=agWRWH+a3sWRW; A=0GWROW+ad3 WRW, (17)
with .
_ _ as
ag = — , = ——F . 18
67 g K (3as + ag) (18)



Clearly, the arising secant compliance and stiffness are no longer of the Valanis-type and
actually include all but coefficients ¢, ¢4 and es, e4 for the tensor representations in terms
of ¢ and ¢, and all but coefficients ¢;, co, cg and ey, €9, eg for the tensor representations
in terms of w and w. Notice that to reduce the former terms, the isotropic square-root
function /¢ ~(1, ¢, ), eqn (7), must be adopted, and similarly for ¢. This means
that symmetric damage-effect tensors with either all but ‘shear-like’ coefficients as, a4 and
a9, a4, and all but coefficients aq, as, ag and a4, s, ag should also be part of the solution set.
The first possibility is considered much later in Solution (9). The second instance missing
‘shear-like’ coefficients a,, as and ‘non-shear’ coefficients a1, a9 and a;,ag is considered
much below in Solution (3).

Solution (2). As an alternative to Solution (0.2), by taking w?, w? in place of w, w
in the tensor structure of eqn (11). Through Rivlin’s tensorial identity (B.3), this cor-
responds to assume symmetric damage-effect tensors embedding the five-coefficients sets
(03, ay, as, g, 07) and (d3, a4, as, Gg, 67) (lacking coefficients ai, g, ag, Qg and a, as, ag, dg),
namely:

a3 wWROW+aswQw?:+a; (WRI+I®w);
G3WRW+a; w2 Qw2 +ad; ( wI+1Iw),

w w
T - - - - v
as = —a —a7 = a4 = —ag——> ; as = —a —G7 = Gy = —Ago— (20)
3= 6 7 =04 = 6w 3= 6 7= 04 = 6%
2 2
with
w W W w w w w
6= 2oL T G dag—Bal, M ay BT T T v U
ag 13 Qg g — 205 1y (021 ag 13 ag 13

where, similarly to “I,, "I, “I,, *I,,*I,, “I, are the three principal invariants of w=w"" (re-
call also that “I,="1, /"I, and *I,="1,/"I;). Notice the necessary constraints (20) to make
up the complementary inverse pair (19). If as=ag/"I,, which corresponds strictly to as-
sume A=a; w? @ w?, as simplifies to: as=1/a5="I,/as. The coefficients in eqn (21) can be
obtained as a particular case of the general solution treated later in Sections 4.2, 4.3, once
structure (19) is inspected to belong to the solution set. In particular, coefficients ay, a4
and ag, ag in eqn (20) are linked to each other consistently with Solution (s.c), developed
in Section 4.3 for the ‘shear-like’ coefﬁcients Recalling Solution (0.2), equs (19), (20) with

as=1/as="1,/as (namely A=as w? @ w?, A=a; w’ @ w?) lead to compliance and stiffness
with similar five-coefficients sets (cs, ¢4, ¢5, ¢6, ¢7) and (es, ey, €5, €6, €7) in the @, ¢ expan-
sions (and all nine coefficients in the w, w expansions). The same structure (19) of the
damage-effect tensors is also obtained by repeating the experiment of replacing w, w
with w?, w? in Valanis-type damage-effect tensors (17), Solution (1). Actually, this is
precisely the case in (19), (20) with a5 independent from ag and compliance and stiffness
in the ¢, ¢ expansions that embed also coefficients cg and es and lack only coefficients
1, Co, Co and eq, €9, €9. As remarked above, this means again that six-coefficients symmet-
ric damage-effect tensors with all but coefficients ay, as, ag and @y, as, @9 should also be

10



part of the solution set. Without considering constraints (20), damage-effect tensors (19)
formally lead to compliance and stiffness embedding all tensor terms in both ¢, ¢ and
W, W expansions.

Solution (8). As signaled by the outcomes of the previous two solutions, by taking
symmetric damage-effect tensors embedding the six-coefficients sets (as, a4, as, ag, az, ag)
and (as, aq, as, ag, ar, ag) (lacking coefficients ay, as, ag and @y, a@s, ag), namely:

A=a, (WRI+IQW)+as WAW+ a3 WwWROW+a; W QW +a; ( wI+I®w)

+ag (WRW+wRw?); (2
_ 22
A=a, (WRI+IQW)+ads WRW+ a3 WRW+ads W QW2 +a; (WRI+1I®w)

+as (W QW+ wQWw?),
which form a complementary inverse pair provided that

ag(ag + as"1,)? + a2 (ag — as*1,?) ag(ag + as™I,)"I, I,
az = — > wr 2 y a7 = wT w s A4 = —A657 5
o _Gg(as + a5"1))* + a3 (dg — as"1,") o ag(as + as1,)%I, T
with
_ w[1 WIQ _ w[2 g — 2(15“’[2 _ as (Cl6 — 2(15‘”[2)‘”[22
a6 = — w1 » 05 = — 5wy » 08= — ;
Qg w[3 Qg 2@6 — 3a5‘"12 Qg (3(18 + Cl5w11)(20,6 — 3a5‘”12)“’l3
— (2a6 — 3a5™1,) (5a2 + 4asag™I; + a2*I,*)"I, "I, — a2(as — 2a5"”[2)w[22w[ (24)
’ ag(3as + as"1,)2(2as — 3a5"L, )1, 20
ar = , A4 = — .

This solution comprises as a particular case previous Solution (2) when ag=0, ag=0. In
turn, it will be seen later in Section 4.4.2 that Solution (3) is also a particular case
of Solution (25), so that Solutions (2), (3) and (25), form a family of progressively-
enlarged solutions by adding a single supplemental coefficient. Furthermore, same as
before, without accounting constraints (23), damage-effect tensors (22) formally lead to
compliance and stiffness embedding all tensor terms. Notice that Solutions (2) and (3)
are based on the relation ag="1,"1,/(as"I;) (and a4=1/a4) for the ‘shear-like’ coefficients
(Section 4.3), Solutions (s.c), rather than on ag=1/ag, Solutions (s.b), which holds for
Solution (1) and for most of the following solutions.

Solution (4). By switching the roles between coefficients with and without bars in non-
symmetric Solution (0.3), namely by taking the “win’ solution based on two-coefficients
sets ((ZG, agl) in A and (dﬁ, dgg) in A:

A=agWRW+ag WQIL; A=0WRW+adgpI®w?, (25)
with .
_ _ Q91
= —, = - 26
6 ag 92 ag (3(191 + (ZG) ( )



This leads to a form of secant compliance and stiffness different than that of Valanis-type
and embedding respectively only five-coefficients sets (c1, ¢3, ¢g, ¢7, ¢9) and (e, 3, €g, €7, €9)
in the ¢, ¢ expansions (missing coefficients ¢y, ¢4, ¢5, cs and ey, €4, €5, €g), and all but coef-
ficients co, cg and eq, eg in the w, w expansions. However, solutions missing just a single
‘shear-like’ and a single ‘non-shear’ term turn out to be difficult to inspect as being part of
the general solution and, most important, to be expressed simply by compact closed-form
expressions (an example of such cases is given later in Section 4.4.2, Solution (25)). So,
the possibility of a solution based on all but coefficients as, ag and as, ag is not further
explored. The other suggested option leads instead to the solution considered next.

Solution (5). Since once again the latter structure of C and E in the ¢, ¢ representa-
tions could be used by itself to express the damage-effect tensors, by taking symmetric
damage-effect tensors A and A with only the five-coefficients sets (ay, as, ag, ar, ag) and
(@1, as, ag, az, ag) (lacking coefficients ag, a4, a5, ag and ay, a4, as, as):

A=agwRAW+a IQTI+az wwW+a; ( WRI+IQW) +ag (W RI+1®w?); 27)
A=agwRwW+a IQI+asweW+a; ( WRI+I®W) +ay (W2RI+1I®Ww?),
provided that
agar = azag ™I, ,  aia; = a’ ((a3 +ag) 1,2 — 2a6“’12) :
] ] ] (28)
Gsay = a3 ™l ,  agay = a3 ((as + as) “I,” — 2a5"1,)
with
B 1 _ as _ ag _ a3Qqg WIQ
g = —, G3 = ———————, - A7 = 2
0 ag s Qg (3(13 + (16) 0 a6(3a9 + 06) ! a6(3a3 + a6)(3a9 + 06) WI3
_ 9 (20,3 + 06)“722 — 2(3@3 + aﬁ)‘”llwl3
Qg (3(13 + Cle)(3ag —+ CLG) [3
(29)

Damage-effect tensors (27) formally lead to secant compliance and stiffness embedding
all but coefficients cs, cs and es, €4 in the expansion of ¢, ¢ and all but coefficients ¢, and
ey in the expansion of w,w. As already noticed in Solution (1) the first possibility is
considered much below in Solution (9). The other instance is not further explored since a
solution missing only a ‘shear-like’ term is expected to be involved. This solution case with
symmetric damage-effect tensors (27)-(29) displays strict similarities with non-symmetric
Solution (11), subsequently derived (Section 4.4.1).

Solution (6). Another solution instance arises as a particular case of Solution (5) above
by setting az=a;=0, which is compatible with the dual relations a3=a,=0, eqns (29b,d)
and the constraints (28a,c), namely by taking symmetric damage-effect tensors A and A
with only the three-coefficients sets (aq, ag, ag) and (ay, ag, ao):

A= wBW+aI@T+a (weI+Iow); (30)
A=t w@w+ia 101+d (W eI+Iow?),
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provided that

a1 = a% (WI12 - 2w[2) ) Qg = dg (WIIQ - 2W[2) ) (31)
with ) )
1 a as (VL7 — 2V
Go= L, G=—— . g =%k 21w‘°’2)- (32)
Qg Qg (3(19 + aﬁ) a6(3a9 + 06) 13

Same as for Solution (4), damage-effect tensors (30) formally lead to secant compliance
and stiffness embedding only five-coefficients sets (c1, ¢3, ¢, ¢7, ¢9) and (eq, €3, €6, €7, €9) in
the ¢, ¢ expansions, and all but coefficients ¢, cs and e,, eg in the w, W expansions. Notice
the necessary constraints (20), (23), (28), (31) on the coefficients of Solutions (2), (3), (5)
and (6) to make up the complementary inverse pairs (19), (22), (27), (30).

Solution (7). Previous Solution (6) can in turn be enlarged by adding coefficients as,
as, that is by assuming symmetric damage-effect tensors A and A with only the four-
coefficients sets (ay, as, ag, ag) and (ay, as, ag, ag):

A=agwOW+a I®@I+a; w?Q@wW?+ag (W RI+1I®w?); (33)
A=GgwRW+a IQT+a; W QW2 +dg (WRI+1I®w?),
with
_ 1 _ (GQQ - a1a5) (WIQQ - 2w11 WI3) — a50¢ w[32
g = —, ay = )
Qg Qg d (34)
_ a g — (ag — a1a5) (w112 — 2w12) w7y 2 _ agag + 3(@92 - a1a5) w7y 2
as = — d 13 , G9 = — d 13 )
Qg Qg
where
d = (CLG((ZG + 6@9) + 9(@92 - a1a5) + asag (wll2 — QWIQ)) WI32 (35)

+ (alaﬁ — (GQQ — a1a5) (w[12 — QWIQ)) (w[22 — 2w11 w[3) .

Notice that there are no constraints on the coefficients for this solution case. It is apparent
that Solution (6) is recovered as a particular case of Solution (7) by setting a;=0, a;=0 in
eqns (33)-(35). With respect to previous Solutions (6) and (4), damage-effect tensors (33)
lead to secant compliance and stiffness embedding the additional coefficients cg, eg in both
¢, ¢ and w, W expansions, that is comprising all but coefficients ¢y, ¢4, c5 and es, €4, €5 in
¢, @, and all but coefficients c,, e, in w, w. While the second option is not investigated
further, the first eventuality is considered later in Solution (10).

Solution (8). A further enlargement of previous Solution (7), however based on con-
straints on the coefficients, can be provided by adding coefficients a3 and a3 to Solu-
tion (7), that is by assuming symmetric damage-effect tensors A and A with only the five-
coefficients sets (ay,as, as, ag, ag) and (ay, as, as, ag, ag) (lacking coefficients as, a4, az, ag
and Qs, g, a7, dg)l

A=agwWwRAW+a IQTI+a3 WRW+a; wQW2+ag (WRI+1I®w?);
A=as WRwW

36
A—a +u Il+taswewtas ww?+dy (WI+Iow?), (36)
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provided that

= — _ = — = — _ = — _ = — — — — 37
ai ag WIQ , G5 a a wllwl3 ; a1 Gy WIQ , G ) Gy w]1WI3 7( )
with

_ 1 _ as _ ag I, *1, "1,
g = —, O3=——F———~, 0O09=———— |
Qg Qg (3@3 + 06) ag d (38)
1 — as d' ) 5 — as d' )
where
d' = ag™l,"1,"I, — 2 ag (“"122 ("I2 1) — I, L, (Y12 + 3“[2)) : (39)

Notice that, when a3=0, a3=0, eqn (38b) is consistently fulfilled, and Solution (8) de-
generates only into a particular form of Solution (7) with constraints (37) holding on
coefficients ay, a5 and a;,as. Damage-effect tensors (36) formally lead to secant compli-
ance and stiffness embedding all but coefficients ¢y, ¢4 and ey, e4 in the ¢, ¢ expansions,
and all but coefficients c9, €5 in the w, w representations. The first possibility leads to
the quite general solution considered next.

Solution (9). As already noticed in Solutions (1), (5), and just now in Solution (8), a
full enlargement of previous Solutions (5), (8) containing all the ‘non-shear’ terms (and
thus without any constraint on the coefficients) can be obtained by assuming symmetric
damage-effect tensors A and A with the seven-coefficients sets (a1, as, as, ag, ar, ag, ag) and
(a1, as, as, ag, ar, as, ag) (lacking only the two ‘shear-like’ coefficients as, ay and as, ay):

A=agwAW+a I@I+a3 wW+a; w2 @wW?+a; ( WRI+1IQw)
+as (WRWH+WRW?) +ag (WRI+1I®w?);

_ (40)
A=agwWwRW+a IQI+az wW+as W Qw?+a; ( WRI+I®w)
+ag (W QW+ WQRW) +ay (WRI+I®wW?),
with
B 1 B ny B 5 B n*‘”l32
ag = — , ay = — 3 as = ——-, a5 = )
a ag d* d* ag d*
¢ R L A o (41)
ar = — = =
T Qg d*’ 8 Qg d* ’ 9 Qg d* ’
where

d* = ag (—9 ay as + 3 azag + (ag + 3 ag)? + 2 ag ag ™I, + as ag (“I,> — 2™1,)
+2 (azas — a2) (*I,” — 3“[2)) I,>
+ag [—2 (ay az—a?) “I,+2 (a6 ar—3 (a1 ag—az ag)) “I,—2 (a3 ag—az ag) ("I, “1,—9™1;)
+2 (a5 a7 — ag ag) (*I, ("I,* = 271,) — 3™, 1) | “1,
+ag (alaﬁ + 2(ayaz — a2) + 2(arag — azag)™I, + (aras — a2)(*1,*> — 2“[2))(‘”122 — 2"1,*I,)
—(a1a§—a5(a1a3—a$)+ag(a3ag—2a7a8)) ("1, 21,2 — 4% — 4T P+ 18T "L, — 2T71,7)
(42)
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ny = ag [(al as — a2) ™I, + 2 (a5 ar — ag ag) *I, + (a5 (3as+ ag) — 3a§) ‘”13] I,
—[2 ayai — as (a1 (2a3+ag) —2 a%) + ag (ag (2a3 + ag) — 4ay (lg):| (“,2 - 3*I,"1,) ,
(43)

n% = ag (a3 ag + 6 (as ag — a7 ag) + (asas — a2) (*I,> — 2“[2)) T,
—(a1 ai — as (a1 a3 — a?) + ag (az ag — 2 ay Clg)) ((‘”112 — 2V, ("1,2 — 2*1,v1,) — 9‘”132)
+ag (a1 az — af) ("L = 271 )
(44)

nt = ag (3 a2 — ay (3as + ag) — 2 (ay ag — ay ag) ™I, — (a1 as — a2) (*I,> — 2“’[2)) (45)
+2 ((ll a% — as (a1 as — a%) + ag (03 ag — 2(17 Clg)) (w112 - 3“72) s
n% = ag ag (ag + 3ag + ag 1) *L,> + ag (a1 ag — ay ag) (“1,” — 21, *I,)
+(a5 a? + ag (a3 ag — 2 arag) — ay (azas — a%)) (Wll ("I1,2 — 2~I,*I,) — 3“1, WI3) (46)
—d0g WI3 (0/7 (3 as WI3 — asg WIQ) + as (a5 wll WI3 + ag WIQ)) s

ny = ag (ay az — a?) I,
+ag [3 ajag — a7 (ag + 3 ag) — ay (ag “I, + a5 (“I,> — 2“[2))
+ag (03 v+ ag ("1 - 2w[2))] "1y
—(a1 ai — as (ay a3 — a2) + ag (az ag — 2 az Clg)) (“’12 ("1,2 —2*L,) — 3™, “’13) :

ng = ag (a1 ag — ar ag) "I,
+ag (3 (a1 a5 + ay ag) — ag (3asz + ag + 3 ag) + (as ay; — ag ag) ‘”Il) I, (48)
‘f‘(Ch a§ — Qpy (a1 as — a%) + ag (a3 g — 2 ar ag)) (WII WIQ - 9w13) .

It can be seen that Solution (7), eqns (33)-(35), which works as well with no constraints on
the coefficients, can be recovered from Solution (9) by setting az=ar=as=0 in eqns (40)-
(48), consistently with az=a;=ag=0. Damage-effect tensors (40) lead to secant compliance
and stiffness embedding all but coefficients cs, ¢, and ey, e, in the ¢, ¢ expansions, and
all but coefficients cq, €5 in the w, w representations. Despite the fact that Solution (9)
includes all the ‘non-shear’ coefficients, eqns (41)-(48) display a reasonable degree of
complexity comparing to other solutions that are presented in the paper (and as well
with respect to others that are not included here). This makes Solution (9) at the same
time the more general form and much compact instance of the solution set that works
without constraints on the coefficients and lacks only the two ‘shear-like’ terms missing
in Solution (s.b).

Solution (10). As suggested at the end of Solution (77), another solution instance can
be conceived either as a particular case of Solution (9) for as=0, a5=0, or as an enlarge-
ment of Solution (5) with the additional coefficients ag, as, that is by taking symmet-
ric damage-effect tensors A and A with the six-coefficients sets (a1, a3, a6, a7, ag, ag) and
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(dl, as, ag, a7, as, dg) (lacking OIlly coefficients ag, 4, sy and as, Ay, EL5)§

A=agwAWH+ I+ ww+a;(wRI+Iw)+ag(W2w+wew?)
+ag (W2 RI+1I®w?);

A

GWRW+ o I@I+aswwW+a; ( WRI+I®W) +as (W2 QW+ W ® w?)
+adg (W QI+1I®w?),
provided that

2(19 (03 ag — 2(17 Clg) (w112 — 3w12) + Qg (a7 (3 ar + 2(19‘"]1) + (lg (wllz — QWIQ)) .

Qg (3a3+a6)+2a8 (aﬁ Il—as( [1 -3 12)) (50)
 2ag(a3as — 207 as) (*," — 3¥L,) + ag (a7 (37 + 2a9™,) + a3 ("I, — 2°1,))
a; = — — — s
G (35 + ao) + 25 (a ™, — s (*I," — 3"1,))
with 5 3 3
_ _ ny _ ns _ nz
ag=—, G =—s, 3=——+, a7=———,
6 Qg ! Qg d2 s Qg d2 ! Qg d2
— — Wi w2 — 2V
a — ag a7 + (az ag — az ag) I + ag ag ("1, 5) ., (51)
Qg d
_ 3arag —ag(3az+asg+asg™l,)
Qg = = [3,
Qg d
where
d = Qg a7 WIQ + ag (3 as + ag + 3(19 + 2(18 wll) WI3 -2 Clg (w]12 - 3w12) WI3 (52)

ny = 2a3 (3ag™l; + 2a9"L,) (“I,* — 3*L,) “I; + 2 a2 a2 (“1,* I, — “L,*)
—(3 ayag — ag (3az + aﬁ)) (2 arag — ag(3az + ag + 2 ag WII)) ("I1,2 — 3*I,*1,) (53)
+(3az+ag+2as™,) (ag(aga3—a7a8)(w122—3‘”11‘”13) —aﬁ""l3(a§wll+2a8ag""[2+3a§w[3)) ,

ng = 2ag ("I, — 3L, (*I,> — 2*L) *I,> — a% a2 (*I,° "1, — 21 **I, — 271,?)
—a? (6aras™1,* + a2 (*,” — 2¥1,) "I,” + a2 ("1, — 21, 1))
+ag ay ("I,* = 271) (9 "I - ("L - 27) ("L - 2, WI3))
+a3 (363 "1," + 18agag ™I — a ("I,* 1, — 271,° 1, — 27™1,%))
+2a7 a2 [6as ("I,2 — 3¥1,) “I,? — ay "I, (971, — (",7 — 27, (",7 — 271, T3) )]
~2agas {a2 "1, (",* = 2*1,) "I,* + 21, (*1,” — 2™1, 1)
+ag [6as T, T + ag (97,7 — (1,2 = 21,) ("1, - 21, 71,)) |}
+as {ag Y2 +2a2 (3ag + ag™1,) “I,* — 1262 ag (*I,> — 3™1,) *1,>
+2aza5a9("1, 71, — 21Ty — 27°L7) + 20503, (9712 — ("1, — 2°L,) ("L, — 2°1,T;) )
+ag| (9a3+12asa5"T, — a3(5°1, = 12°T,) )1, — a7 (18a5™1,* — 2a0™T, (*1,” — 2*1,T3) ) | },

(54)
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nr = a3 ag "I, — 6a3 ag (*I,> — 3*L) *L,> — 2a} (“1,° — 31, L, “1,°
—a2(3a2 + af ("I,* - 2°1,)) (3L, I, — 1, ("I,> — 2™1, 1))
~3adag (ag™1, "Iy — ag ("I, *1,> = 271> T, — 371,"1,))
~2a7d3 (as ("1,> = 371,) "I, "Iy + a9 (271> "1, — 3710 — 41, T + 3™, 71, 1))
+a3 [3as (ag + as 1) "I,” + ar (a5 ™1, "Iy — ag ("I,* — 21, *1,))]|
+ag as [6 as(ag ™1, + a5 L)L + (32 + af ("2 — 2~1,)) ("L,? — 21, 71)
+2ar (as ™1, 1, Ty — ag ("1, 1, = 271> T, — 371,°1,) )|
+as {203 ay (*I,% = 3¥1,) "1, "1, — a3 Iy (ag ™1, — 3 ag 1)
+2aga? (271, *I,> — 3"1,°> — 4~ > "I, + 3™, *I, ")
+6 a7 as ag (371, "I, — 1, ("1, = 2”1, 1))
—ag [as ag (271, "I, — 9713) "Iy — 3a3 "1, 1% — af (1, “1,* — 271,771y — 371, "Ty)

~3ar (as ™1, "Iy — a9 ("1, = 271, "))}

(55)

Notice that, when ag=0, ag=0 and constraints (28a,c) hold, constraints (50) degenerate
into constraints (28b,d). Damage-effect tensors (49) lead to secant compliance and stiff-
ness embedding all but coefficients ¢y, ¢, and ey, e, in the ¢, ¢ expansions, and all but
coefficients ¢y, ey in the w, w representations. Despite the fact that Solution (10) is just
a particular case of Solution (9), it turns out to display a higher degree of complexity in
the expressions of the dual coefficients. Other particular instances of Solution (9) based
on six-coefficients sets could be obtained as well as alternatives of Solution (10) by setting
to zero, instead of a5, one of the remaining ‘non-shear’ coefficients and getting a corre-
sponding constraint on the parameters. However, these solutions turn out to be even
more complex than Solution (10) and are not presented here.

The solutions already advanced here are now framed by a more general treatment.

4.2 General framework

The general solution of the problem under consideration is in principle formally simple
to obtain. Consider the L-2M matrix representation of A, Appendix A, eqn (A.7), with
six ‘Lamé’s-like’ parameters l;;, i#j=1-3, three ‘shear-like’ parameters m;;, i<j=1-3, and
three diagonal parameters [;+2m;;, i=1-3, expressed in eqns (A.4), (A.6) in terms of
twelve coefficients a;, i=1-6; a;1, a;2, 1=7-9, and principal values w;, t=1-3. Consider as
well a similar dual L-2M decomposition of A and dual relations for l_z-j, m;; and Lii4+2m;
in terms of twelve dual coefficients a;, a;1, @2, and principal values w;=1/w;.

For the problem at hand, we want to impose that 3x3 submatrices L, L and 2M, 2M
correspond to each other through an inversion operation (notice that here, with the present
notation privileging the duality structure of 2M and 2M, M=M"'/4#M™). Working
like that it is possible to express formally the complementary coefficients a;, @;1, ;2 of the
sought solution set in terms of the given a;, a;1, a; and principal values w; or invariants
of w (and viceversa). In this respect, note that the solution of the three coefficients of
the ‘shear terms’ with symmetrized dyadic products ‘® ’ solves independently from the
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others; this solution is also considerably simpler due to the diagonal nature of matrices
2M and 2M. However, the problem is not fully decoupled in the sense that these latter
coefficients also enter the final expression of the solution of the coefficients of the ‘non-
shear’ rank-one update terms with dyadic products ‘®’. This is due to the fact that the
‘shear-like’ parameters affect as well the upper three-diagonal entries of L and L in the
matrix representations of the damage-effect tensors (Appendix A).

The full problem solution could be achieved in at least two ways: (a) directly, by first
inverting formally 3x3 (full) matrix L and (diagonal) matrix 2M (expressed in terms
of l;;, mi;, ai, ai1, a2, w;), subsequently imposing entry-by-entry the equality to L and
2M (expressed in terms of l_z-j, Mij, Gis Gi1, Gio, W;=1/w;) and finally solving the obtained
equations in terms of the coefficients a;, @;1, @;> (this last phase involves the solution of a
9x9 and a 3x3 system); (b) indirectly, by first preparing inverse relations (A.8)-(A.13),
written in terms of coefficients and parameters with bars (which imply the solution of
a 9x9 and a 3x3 system at this stage), and replacing in them ‘Lamé’s-like’ and ‘shear-
like’ parameters with bars coming from the entries of the formal inverses of L and 2IM
(expressed in terms of a;, a;1, a;2).

What just explained here should become clearer now with the solution of the ‘shear-
like” coefficients, which can be done in a straight-forward manner and is reported first
below. However, although the complete solution of the other nine ‘non-shear’ coefficients
can be determined rapidly by using any mathematical symbolic software, it finally results
rather involved and too lengthy to be reported in closed form. Also, and most important,
it is difficult to locate in this general solution the convenient forms of complementary
damage-effect tensors that possess just a reduced number of corresponding non-zero co-
efficients and relevant tensor terms. Thus, instead of trying to enumerate all the possible
special solutions, we will be content to collect a set of particular solutions that, as done
in Section 4.1, are guessed or determined through alternative procedures and are then
verified to belong to the general solution discussed above.

4.3 ‘Shear-like’ coefficients

The solution related to the inversion of the three ‘shear-like’ parameters is quite straight-
forward. Since diagonal 3x3 matrices 2M and 2M must be the inverse of each other,
the three ‘shear-like’ parameters m;; and m;; must satisfy the three relations 4m;;m;;=1,
i<j=1-3. As noted above, this can be done in at least two ways: (a) take eqns (A.4b) for
2m;; in terms of @y, a4, G and @;; pose w;=1/w; and 2m;;=1/(2m;;); invert the system
of the three obtained equations and express the three 2m,;; by relations (A.4b) to get
as, dy, ag in terms of ag, ay, ag and eigenvalues w;; (b) take already inverse relations (A.13)
for the coefficients and parameters with bars and eigenvalues w;=1/w;; replace in them
2m;j=1/(2m;;), with 2m,; given by eqn (A.4b).

Solution (s). The general ‘shear-like’ solution arising from either of the two approaches
above can be expressed in compact closed form as follows:
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( a2 + ay(ay*I, + a,*L, + ag"1,)

Cl2 — d 3
_ ayag— a3

§ a4 = T WI3 s (56)

S

_ ay(ay + a"I, + ag”L) + a2 "I

L Qg = ) 1,

S

where the denominator factor

ds = 2my9 2mag 2my3
= ay® + ay? (2a4 ™I} + ag™1y) + as’ ("1, 1, WI3) + 2 a4 ag* VI, + ag’ WI32 (57)

is obtained in invariant form from the expressions of the ‘shear-like’ parameters 2ms,
2mo3, 2mqz given in eqn (A.4b) in terms of coefficients as, a4, ag and principal values
w1, wy, w3. Notice that, when the natural constraint (8a) is satisfied by as, ay, ag for
w=I, namely [as+2a,+ag](I)=1, the analogous constraint for as, a4, as is automatically
granted. Indeed, for w=I, from eqns (56), (57) one obtains d,(I)=([as+2as+ae)(I))* and
[G9+2a4+a6)(I)=1/([az+2a4+ag](I)).

Particular instances of general ‘shear-like’ solution (56) with a single non-zero ‘shear-
like’ coefficient (both with coefficient a4 equal to zero) are the following:

Solution (s.a): ay;=as=0, ay#0 and a,=as=0, as=1/a, (leading to possibly-constant
‘shear-like’ terms 2m;;=as);

Solution (s.b): a;=a,=0, ag#0 and ay=a,=0, ag=1/a¢ (leading to Valanis-type ‘shear-
like’” terms 2m;j=agw;w;).

These two cases, when not accompanied by other non-zero coefficients of the ‘non-shear’
terms, do form by themselves instances of the solution set and render respectively known
Solution (0.1) of isotropic damage based on a single scalar damage variable (or even of no
damage if as=1), and Solution (0.2) of Valanis-type damage. Examples of the solution
set based on Solution (s.a) will be provided in Section 4.4, while examples of the solution
set based on Solution (s.b) have been given in Section 4.1 and additional ones will be
reported in Section 4.4.

Particular cases of general solution (56) with two non-zero ‘shear-like’ coefficients
(both pivoting on non-zero coefficient a4, with common feature a;=1/a4) are the follow-

ing:

Solution (s.c): a,=0, ag=—a,"L,/"I,=—a,"], and a,=0, a,=1/a,, ag=—a,"1,/"];=
—a,"l,="1,"1,/(as"1s);

—ay 1, ="1,"1,/(ay"I;).

These two cases, when not accompanied by other non-zero coefficients of the ‘non-shear’
terms, do not form by themselves instances of the solution set: the inversion of damage-
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effect tensors based only on ‘shear-like’ terms (s.c) and (s.d) spreads over all the ‘non-
shear’ terms of the dual base. Solution (s.c) has been recognized as being part of Solu-
tions (2) and (3) and used there to get the expressions of the other ‘non-shear’ coefficients
through the inspection of the general solution. Additional solution instances based on So-
lution (s.c) and generalizing Solutions (2)-(3) will be given in Section 4.4.2, Solutions (25)
and (26). Specific new solution instances adding ‘non-shear’ coefficients to Solution (s.d)
have not been suggested by the additional foreseen solutions advanced in Section 4.1.
Obviously this does not imply that such solutions do not exist. However, without any
specific hint, the inspection of the general solution for this case turns out to be particularly
difficult. Actually, this holds as well for guesses that may arise from the known solution
instances. For example, it is possible to verify that a counterpart of Solution (3) lacking
only coefficients (ay, ag, ag), (a1, ag, ag) is indeed a solution instance but expressed by re-
lations exceeding by far in complexity that of Solution (3), and rather resembling more
that of Solution (25). The same holds as well for a counterpart of Solution (25) itself,
which would lack only coefficients (aq, ag), (@1, ag): this is indeed a solution instance but
expressed in a form even more involved than that already given in Solution (25). Then,
to simplify the solution search on the ‘non-shear’ coefficients, the possibility to formalize
instances based on Solution (s.d)is not further explored. The same is adopted as well for
solutions that would be characterized by the full set of ‘shear-like’ coefficients as, a4, ag,
a9, ay, ag in Solution (s). Then, the sequel of the paper is devoted to explore only new
solution instances based just on subset ‘shear-like’ Solutions (s.a), (s.b) and (s.c), the
first one characterized by the feature a;#0, a;#0, the second two by the common feature
02:0, dgzo.

4.4 ‘Non-shear’ coefficients

As commented above, the general solution concerning the ‘non-shear’ coefficients is rather
involved and does not make easy neither the complete enumeration of all particular cases
nor the location of single specific subsets possessing the complementary structure. How-
ever, a guided search for additional particular solutions rendered at least the set of new
sixteen complementary solutions that is listed below. Ten of these solutions are non-
symmetric and have been derived through the considerations reported later in Section 5.
The remaining siz solutions are symmetric and have been obtained either on the base
of the new non-symmetric solutions, or as enlargements or alternatives of the additional
foreseen solutions already advanced in Section 4.1.

Focusing only on solutions embedding either Solutions (s.a), (s.b) or (s.c), in the
following of the paper it is always assumed that: either ay=a=0, a4=as=0, with ‘orthog-
onal’ parameters ay=1/as, as=1/asy; or ap=a,=0, as=a,=0, with ‘orthogonal’ parameters
ag=1/ag, ag=1/ag; or a;=0, a;=0 with ‘orthogonal’ parameters as=1/a,=—as"1;/"1,,
64:1/a4:—66”"[3/”"[2.
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4.4.1 Non-symmetric solutions

Solution (11). Four-coefficients sets (ag, ag, ags, aze) and (ag, as, Gg;, G71) give rise to the
non-symmetric complementary inverse pair:

A=agWRW+asWROW+apIdw?+anl®w;
A=agWRAW+a3 WRW +ag W I+an wel, (58)
provided that
(g7 = Q3099 tT W ; Qgl71 = 3091 tT W, (59)
with
_ 1 as _ a9 _ azagy tr W
T BT ag(3a3 + ag)’ o= _m; = ag(3az + ag)(3ags + ag) ’

(60)
where tr w="I,="1,/"1,.

Eqns (58)-(60) originate damage-effect tensors homogeneous of degree two in w and
w based e.g. on the three free coefficients (ag, as, ags) and (ag, as, ag):

_ asa
A=asWRW+a3wRW +ag I®@w?+ 392trwI(X)w;
a
= — @3@691 (61)
A=GgWRWH+a3 WROW+idy W QI+ ——trw wal,
Ge

with the natural constraints (8) at zero damage, that is ag(I)=1, [az+aoe+3asag](I)=0
and ag(I)=1, [a3+ag;+3a3ae1|(I)=0 still to be imposed on the coefficients.

A possible simple one-parameter instance of eqn (61) satisfying directly the natural
constraints and based e.g. on the single coefficient a3#1/3 is obtained by taking ag=as=1,
092:—a3/(1+3a3), dglz—dg/(1+3ag) and d3:—a3/(1+3a3):

2

— a
A=wWwQRQW+a; WRW — 1+ 3a; I®w?— 1_{_‘;@3 trw IQ@w;
. a as (62
A=WRW+id; WRW— 1+?§3a3 w1 - 1+2@3 trw wol.

For az=a3=0, this solution reduces right-away to Valanis-type damage, Solution (0.2).
Notice that the constraints (59) on the coefficients are necessary to make up the com-
plementary inverse pair (58) (see also explanations given later in Section 5). The only re-
duced particular instances of Solution (11) are the previous two-coefficients non-symmetric
Solution (0.3), ‘extended’ formulation (with az=a7y=0, G3=ar;=0), and symmetric Solu-
tion (1), Valanis-type damage-effect tensors (with aze=age=0, G71=ad9;=0). So, as shown
by constraints (59), the three-coefficients particular case with just a;,=0, a;;=0 is not
part of the solution set, nor are, as apparent from eqn (61), the other three-coefficients
particular cases with just a3=0, az=0 and with just ago=0, ag;=0. Also, note that, despite
the similarity to symmetric Solution (5), this non-symmetric solution instance cannot be
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enlarged by including also the terms IQI. Indeed, an attempt to do that by introduc-
ing a; IQT in (58a), is immediately contradicted by the condition a;=0 required by the
inspection of the general solution of the ‘non-shear’ coefficients discussed in Section 4.2.
So, a non-symmetric counterpart of Solution (5), eqn (27), that might be expected to
arise as an extension of eqn (58), is actually not a case of the sought solution set. Same
as for Solution (1), compliance and stiffness obtained formally from damage-effect ten-
sors (58) include all but coefficients ¢y, cy and ey, e, for the ¢, ¢ representations, and all
but coefficients ¢, ¢, ¢g and eq, €9, €9 for the w, w representations.

Solution (12). A sort of ‘reciprocal’ of the previous solution is obtained just by replacing
are, Gy With agy, agy: four-coefficients sets (ag, as, age, agy) and (ag, as, Ggy, ag1) give rise
to the non-symmetric complementary inverse pair:

A=agWRW+a3 WRW+ ag I®W? + agy w®@w? ; (63)
A=GgWRWH+a3 WRW+adg W RI+ag W @Ww,
provided that
(gagy = A3092 IT W ; agag) = A30gy tr W, (64)

where tr w="1,="1,/"1,, tr w="1,="1,/"I,, with

. 1 . as _ . 99 - . 3099 trw
6 = ag 4= a6(3a3 + aﬁ) » 9= a6(3a92 + aﬁ) P a8 a6(3a3 + aﬁ)(3a92 + le) )
65
Notice the interchange of roles between the first invariants “I;=trw and “I,=trw in
eqns (59)-(60) and (64)-(65). Same as for Solution (11), compliance and stiffness obtained
formally from damage-effect tensors (63) include all but coefficients co, ¢4 and ey, e4 for the
¢, ¢ representations, and lack coefficients ¢;, ¢, and ey, e, for the w, w representations.
However, coefficients ags, @g; bring in the additional terms attached to coefficients cqg, eq.
This suggests that a solution with all but coefficients as, a; and @y, @; should also be part
of the solution set. Such solution instance, which further enlarges Solutions (2) and (3),
is considered later in Solution (25), Section 4.4.2. The same remark outlined above for
Solution (11)1is also valid here: the terms a; IQI and @; IQI cannot be added to the tensor
terms in eqn (63) without self-contradiction.

Solution (18). Five-coeflicients sets (ag, as, ags, are, agy) and (ag, as, agr, ary, ag) give
rise to the non-symmetric complementary inverse pair:

A=agWRW+a3WRW+apI@w?+anIl®@w+agmw®w?; (66)
A=agWRWH+a3WRW+ay W@I+an wl+ag w?OWw,
with
_ 1 _ agaz + 3((13@92 - (172@82) _ agagy — tr v‘v(a3a92 - (172@82)
g=—, a3 = — y @11 =— 9
Qg Qg d2 Qg d2 (67)
. Ggagz + 3(a3a92 - Cl72a82) __ agarp —tr W(a3a92 — a72a82)
agy — — ;  ag1 = — )
ag dy ag dy
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and
dy = (ag + 3az + agatr w)(ag + 3age + aratr w) — (3are + agetr w)(3agy + az trw)
= (ag + 3az + aratr w)(ag + 3age + agatr w) — (3ars + az tr w)(3asy + agotr w) (68)
= aG(aﬁ + 3(13 + 3Cl92 + arotr w + agstr W) + (a3a92 — a72a82)(9 —trw tr W) ,

where tr w="1,="1,/"I,. There are no constraints on the coefficients for this solution case.
Solutions (11) and (12) are contained as the only particular cases of Solution (13) (except
for those already cited and included in Solutions (11) and (12) themselves). Solution (11)
is recovered by setting ago=0 in (66a) and imposing ag;=0 in (67¢), leading to the con-
straint (59a). Also, dy, eqn (68), simplifies to dy=(3az+ag)(3ag2+as), while coefficients
as, g1, ar in (67) reduce to the expressions in (60) and satisfy constraint (59b). Similarly,
Solution (12) is obtained by setting az,=0, a;1=0. Same as for Solutions (11) and (12),
the terms a; IQT and a; IRI cannot be added to eqn (66) without self-contradiction. As for
Solution (12), compliance and stiffness obtained from damage-effect tensors (66) include
all but coefficients ¢y, ¢4 and ey, e4 for the ¢, ¢ representations, and all but coefficients
c1, o and eq, eo for the w, w representations.

Three additional non-symmetric solution cases can also be obtained as ‘twins’ of So-
lutions (11)-(13) just by inverting the roles between coefficients with and without bars.
Then, the counterparts of Solutions (11)-(13) can readily be listed below for the sake of
completeness:

Solution (14). Four-coefficients sets (ag, ag, agi, az1) and (ag, as, Ggg, G72) give rise to the
non-symmetric complementary inverse pair:

A=agWRW+aswWQRW+ag W QI +an wl;

A=GgWRW+aG3 WRW +agp IQ@W2 +anIow, (69)
provided that
(671 = Q3091 tT W ; Gglro = Q3lgo tT W, (70)
with
_ 1 as _ ag1 o asag; tr w
46 = ag’ 4= _a6(3a3 +ag)’ o2 = _a6(3a91 +ag)’ a2 = ag(3as + ag)(3agy + ag)

(71)

Solution (15). Four-coefficients sets (ag, ag, agi, agy) and (ag, as, ago, Ggz) give rise to the
non-symmetric complementary inverse pair:

A=agWRW+az3WRW+ag W QRI+ag; w?Qw ;

A= WRW+a3 WRW+ g I @ W2 + Ggo W @ W, (72)
provided that
agag) = G309 tT W ; (glgy = 3099 tT W, (73)
with
_ 1 _ as _ agy o asagy trw
6 = ag’ 4 = a(3az + ag) o2 = ag(3ag; + ag) 82 = ag(3as + ag)(3agr + ag)

(74)

23



Solution (16). Five-coeflicients sets (ag, as, a1, ar1, as1) and (ag, as, gz, dra, dgy) give
rise to the non-symmetric complementary inverse pair:

A=agWRW+a3WRW+ag WRI+a; wI+ag w?Qw; (75)
A= (g WQRW + a3 W QW + Ggo IQW2 +anl@Ww+agp wew?,
with
_— 1 _ agaz + 3((13@91 - a?lasl) _ __ Geag1 — tr v‘v(a3a91 - a?lasl)
g=—, a3 = — y Qo= — )
Qg Qg d1 Qg d1 (76)
__ Gsag1 + 3(Cl36l91 - Cl71a81) __ agap —tr W(a3a91 — a71a81)
ago = — ;  aga = — )
ag dy ag dy
and
dy = (ag + 3as + agitr w)(ag + 3ag; + a71tr w) — (3az; + ag1tr w)(3ag, + az trw)
= (ag + 3as + a7itr w)(ag + 3agr + agitr w) — (3ar; + ag trw)(3ag; + agitr w) (77)

= ag(ag + 3az + 3ag; + aritr w + agitr w) + (azagy — arag)(9 — trw trw) .

There are no constraints on the coefficients for this solution case. Solutions (14)-(16)
formally lead to compliance and stiffness embedding all but coefficients ¢y, ¢4 and es, 4 in
the ¢, ¢ representation, and all but coefficient ¢; and e; in the w, W expansion.

A new family of four non-symmetric solutions is listed below, which is based on
damage-effect tensors obtained as single rank-one updates of the symmetric identity terms
a I®I, ay IRQ I, Solution (s.a) (see Section 5.2).

Solution (17). Four-coefficients sets (as, ag, ari, age) and (ag, as, aro, Gg1) give rise to the
non-symmetric complementary inverse pair:

A=aIR@l+aswW+an wI+ag w®w?;

_ 78
A= IQRI+asWRW+inl®@W+iy W2Q W, (78)
provided that
as ar as _ as o _ aro as
=—u "1 = w7 = T wr =——"I = — = —— 79
ar w[1 2, (g2 w[2 w[1 PN ) w[1 2, 0sg1 w[2 w[1 ) ( )
with
_ 1 _ as w[2 WI3
A = — Y as = — w w 7
2 a9 3 a9 (Cl2 Il — 3(13 13) (80)
as ™I, *I, as “1,*

Qo = ag) =

(ZQ(CLQWII —303“’[3) ’ (ZQ(CLQWII —303“’[3) .

Notice that this solution displays ‘mixed’ coefficients a1, ags (i.e. with different second in-
dex) and dual ones @7, Gg;. Solution (17) corresponds to take the dual damage-effect ten-
sors A=ay IR I+awew, A=d, IQ I+aw®w, where Gy=1/a, and a=—a/(az(3a+as)),
and conversely as=1/a, and a=—a/(as(3a@+az)). The link with expressions (78) goes
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with relations a=—a3"I;/*I, and a=—a3"I;/"I,. Compliance and stiffness obtained for-
mally from damage-effect tensors (78) include all but coefficients ¢4, cg and ey, €5 in the
w, w representations. This would lead to a more general solution instance of dual damage-
effect tensors embedding all but coefficients a4, ag and a4, ag, that is the counterpart of
Solution (9) but based on as, as instead of ag, ag. This solution would represent the more
general form of solutions based on Solution (s.a) and would comprise as particular cases
Solution (17) and Solutions (18)-(24) presented next. However, this solution instance
results more involved than Solution (9) and even of Solution (10), thus it is not presented
here.

Solution (18). A ‘twin’ of previous Solution (17) is obtained by taking the four-
coefficients sets (aq, as, aro, ag1) and (ay, as, ary, asz), which give rise to the non-symmetric
complementary inverse pair:

A=aIRl+aswROW+anl®@w+ag W@ W ;

_ 81
A= IRI+asWRW+ay WwRI+adg w®w?, (81)
provided that
as ar as _ as _ ar as
= ——" = —"=——"_ = ——V] = — = —— 82
Q72 w[1 2, Qg1 W12 w[1 ;o an w[1 2, (g2 w[2 w[1 ) ( )
with
Ao = —, Q3 = — - - ;
2 a9 3 a9 (CLQ Il — 3(13 13) (83)
az ™I, *I, as ™1,*

= as(az ™, — 3az™1;) ’ 82 = as(ag ™, — 3az*I;)

Again, this solution instance displays ‘mixed’ coefficients ar9, agy, and dual ones azq, ass.
It corresponds to assume the ‘twin’ dual damage-effect tensors A=a, IQ I+a’ wQw,
A=, 1R I+a' w@w, where, similarly as above, do=1/ay, &'=—0a'/(a2(3a/+az)); as=1/as,,
o'=—a'/(a2(3@'+az)). The link with expressions (81) goes with relations o'=—a3"I; /"1,
and a/=—a3z"I;/"I,. As a new important feature with respect to ‘twin’ Solution (17),
compliance and stiffness obtained formally from damage-effect tensors (81) include only
coefficients ¢y, o, 3, ¢7, cg and eq, e, €3, €7, €g in the w, w representations. This leads to
the new instance of dual symmetric damage-effect tensors based on five-coefficients sets

(a1, a9, a3, a7, ag) and (ay, as, as, ar, ag) that is given later in Section 4.4.2, Solution (21).

Solution (19). Four-coefficients sets (asg, as, asy, ag;) and (az, s, Gsa, Gg2) give rise to the
non-symmetric complementary inverse pair:

A=ay I@I+as w?Q@wW?+ag w2Qw+ag w?Q1I;

_ 84
A=a, IRI+ a5 W2 @ W2 + dgg W Q@ W2 + digy I @ W2, (84)
provided that
wI_wIwI wIQ_wIwI
a81:as%; a91:a5%;
1, I,
o P (85)
_ I =L _ _ VLT =L
agy = G —————= gy = Qy ——————
82 5 “I, ) 92 5 v, )
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with

1 as ™1, "1,*
Gy = —, a5 = — w wr 2 ;
(05} ag(az 12 + 3@5 I3 ) (86)
oo — U5 "L (ML =L))o _ U L2 (M2 )
82 = ; A9 =

ag(ag WIQ + 3(15 WI32) _GQ(GQ WIQ + 3(15 WI32) .

This solution corresponds to take the dual damage-effect tensors A=a, I® I+3w2Q@w?,
A=, IQ I+ w@w?, where Gy=1/a; and f=—73/(as(3B+as)), and conversely ay=1/a,
and B=—/3/(ay(33+as)). The link with expressions (84) goes with relations f=as"1,%/"I,
and f=as*I,>/*I,. Compliance and stiffness obtained formally from damage-effect ten-
sors (84) include all but coefficients ¢4, cg and ey, g in the w, W representations.

Solution (20). A ‘twin’ of previous Solution (19) is obtained by taking the four-
coefficients sets (aq, as, ags, ags) and (ay, as, agy, agr ), which give rise to the non-symmetric
complementary inverse pair:

A=ay IQI+as w2 QW2+ ag, W QW2+ ag I® w?;

_ 87
A=a IQI+as W2 QW2 +ig W2QW +ig W2R1I, (87)
provided that
wI _w] WI w[?_w] WI
a82:as%; 092:%%;
1, I, (88)
A T A T
a = Qg —M— a = Q5 ————————————
81 5 I, ) 91 5 “, )
with
1 as ™1, "1;*
a9 Cl2(6l2 IQ + 3@5 [3 ) (89)
_ G5 WI?,2 (" -1 "L) _ G5 WI32 (“712 — 1)
agy = — ; Q91 = —

ag(ag WIQ + 3(15 WI32) ag(CLQ WIQ + 3(15 WI32) .

This solution corresponds to take ‘twin’ dual damage-effect tensors A=a, I @ I+’ w?@w?,
A=, IQ I+ w?®@w?, where once again as=1/ay, B'=—p"/(ax(35'+az)) and as=1/ay,
B'=f'/(ay(38'+as)). The link with expressions (87) goes with relations '=a5*I,*/"I,
and B'=as"1,°/*I,. As a new important feature with respect to ‘twin’ Solution (19),
compliance and stiffness obtained formally from damage-effect tensors (87) include only
coefficients ¢, ¢, ¢5, cg, cg and ey, €9, €5, €g, €9 in the w, w representations. This leads to
the new instance of dual symmetric damage-effect tensors based on five-coefficients sets
(a1, ag, as, ag, ag) and (ay, as, as, as, ag) that is given in the next section, Solution (22).

4.4.2 Symmetric solutions

Four new symmetric solutions belonging to the family generated by Solution (s.a) are
listed below.

Solution (21). As signaled by the outcomes of previous non-symmetric Solution (18),
the five-coefficients sets (a1, as, as, ar, ag) and (@, @, as, ar, ag) give rise to the symmetric
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complementary inverse pair (lacking coefficients ay4, as, ag, ag and ay, as, ag, ao):

A=aI@Tl+aI@l+az3wwW+a; ( wWRI+IQW)+ag (W QW+ wQRw?);

_ 90
A=aIRI+a IQI+aww+a; ( WRI+IQW)+as (W Q@wW+wRw?), (0
provided that
—ag™l 2% “I,) — a; “1.
o =2 (a7 s 5)  ay = —ag (a2 + as"I3) — a7 ™1, :
asg I2 ) ) agi ) (91)
Gy (ar —ag ™) 27 (@ +as™ly) —artl
a’l — w ) a3 - a8 — ?
asg IQ Qs
with
1 “I, "1, (2a; — ag™I T,?
Gy = — . G = — as*I, "I (2a7 — as™1,) g = — ag 13 )
a9 ’ a9 (CLQ + 3@8 WI3) (3 a7 — 20,8 WIQ) ’ a9 (CEQ + 3@8 WI3) ’
- a7 — ag WIQ (92)
@ as (3 ary — 2 as WI2) ’
_ w 2w[2 (a2 + 2 as WI3) (3 a7 — 2 as WIQ) + asg w[12 w[3 (2 a7 — as WIQ)
a3 = asg I3 .

a9 (GQ -+ 3@8 WI3)2 (3 ay — 2(18 WIQ)

Damage-effect tensors (90) formally lead to compliance and stiffness embedding all but
coefficients ¢4, cg and ey, eg in the w, w representations.

Solution (22). As signaled by the outcomes of previous non-symmetric Solution (20),
the five-coefficients sets (aq, as, as, as, ag) and (@, as, as, ag, ag) give rise to the symmetric
complementary inverse pair (lacking coefficients as, a4, ag, az and as, a4, ag, az):
A=aIR@T+a;I@I+a;w?@wW?+a3 (WQW+WRW?) +ag (W2RI+1IQw?);
A=aI@l+a,I@Tl+a W @W?+as (W QW+WRW?) +dg (W2RI+1I®w?),

(93)
provided that
n ar ("L,> — 2%, L) + as (VI,2 — 1, *I
@5 = =08 s w7 _ w20 %= 708 aut 1w32v 252 : 3);
ag? ("I, ™1, — ™13) ag ("I, ™1, — 13) (94)
_ n _ W ("I,* = 2*1,*Ly) + a3 ("I," — 1, "I)
a5——a8_2ww - 2 g = —asg — WIWI W[ ’
ay” ("1, "1y — *I3) ap ("I, "1, —*1y)
— Gz 08 (2WI32 ("1,% + 27L) 4+ V1* ("I," — 4, WI3)) ) (95)
95

— ayag (21,7 ("1, + 27L) +°1, (", — 471, V)

27



Q) — Gy — a1 e — ag "I;* ("1, T, —*T,) .
9=—, O = ———F———~, (g = — 3
B a8 w]‘33 /'TLI
as = 2 (96)

az (3ay + a) (az ("1, "1, = ™1y) — 3as™1,”)
as "I;" (a1 (271,° = "I) + az ("I, — WI2))
az (3ar + a) (ag (I, = “1y) — Bas™1;?)

b

where
A= (3ar + a)| 202 "], ("I, — VL) + ag ™y (L2 (U1 = AVD) + 2 (1) 1, 7) )|
— ayas ("1,> — 21)° v, .
(97)
Damage-effect tensors (93) formally lead to compliance and stiffness embedding all but
coefficients ¢4, cg and ey, €6 in the w, w representations.

Solution (23). From relation (96b) it is apparent that a new solution instance can
be obtained consistently just as a particular case of Solution (22) for a;=0, a;=0. In-
deed, the four-coefficients sets (ag, as, as, ag) and (as, as, as, Gg) give rise to the symmetric
complementary inverse pair:

A=aI@T+a;w?@w?+ag(WRW+WRW?) +ag(WRI+1I®w?);

_ 98
A= I01+d; W@ W2 +dg (W QW+ wWRW?) +adg (W I+1I®w?), 58)
provided that
N “I,2 — T, I,
a5 = —ag y A9 = —A§ w7 s
ay (“I, 1, — “1,)* T, "I, — "I, (99)
_ _ ny _ _ WIQ2 — "1, "1,
as = —Ag ————— ~ y A9 = —A8 7 a7 wr
az (I, "I, — WI3)2 1L, ="
where n1=n(ag=0)/as, n1=n(ag=0)/as, eqn (95), namely
n = 2ayL, ("L, = V) — ag (207 ("1, + 270) + VL2 (M1 — 4 M) (100)
iy = 2ay "L, ("L VL, — L) — as (2717 (VL7 4 2°0,) + L7 (UL — 4V 7))
with
L as™I* ("I, "L, — *T)
a2 o ’ a8 o w w w w 2 ’
2ay ™I, ("I, "1, —"1,) + ag "I, (“1,° (*I,> — 4"1,) + 2 ("I,> — I, I
65:(18“[33 2" ("I 3) 8 3( ("L 2) ("1, 1 3)), (101)

2
ao (Cl2 (WII w[2 — w[3) — 3(18 WI32)

g =
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Damage-effect tensors (98) formally lead to compliance and stiffness embedding all but
coefficients ¢4, ¢g and ey, eg in the w, w representations.

Solution (24). An alternative of previous Solution (23) is obtained just by replacing
coefficients ag, ag with ag, az: the four-coefficients sets (as, as, as, ag) and (as, as, as, ag)
give rise to the symmetric complementary inverse pair:

A=aI@T+a3wRW+as;w?QwW? +ag (W2QwW+w®w?);

B 102
A=0IR@T+a3WRW+a; W QW +ag (W @ W+ W Q W), 1o
provided that
az = —asg lw] 2, a5:—8:—a8w2 wy
1 as Il - I2
) S ) (103)
_ wll - WIQ a ag wIl
as = —a = ; - - — - . % )
3 8 T, 5 is 8 w[12 . w]'2
with 9
1 VY (Y — " v
iy = — , s = —ag 2 3( 2d<> 1 3);
a9 )
as = a as = ag —————
3 8 a d° ) 5 8 g d°
where

d* = ay ("I, ("1," = 1)) — as (271, ", ", + ("1, = 27T) ("1, = 2°1"T)) . (105)

Damage-effect tensors (102) formally lead to compliance and stiffness embedding all but
coefficients ¢4, ¢g and ey, eg in the w, w representations.

Two additional symmetric solutions are now considered, which are based on generator
Solution (s.c) with two ‘shear-like’ coefficients.

Solution (25). As commented in Solution (12), a further enlargement of Solutions (2)
and (3), based on Solution (s.c), can be obtained by taking symmetric damage-effect ten-
sors with seven-coefficients sets (a3, as, as, ag, a7, ag, ag) and (as, aq, as, ag, az, ag, ag) (lack-
ing only coefficients ay,ay and aq,as), namely:

RI+IQW)+as WRAW+ a3 WOW+as W2 Qw2 +a; (wI+Iw)

QW4+ wWRW?) +ay (WRI+1I®w?); (106)
106

A=a, (WRI+IQW)+adsWRW+ a3 WRW+ads W QW2 +a; (WRI+1I®w)

W QW+ WRW?) +ay (WRI+I®w?),

N3 WI3 _ ﬁ3
_ . S = Qe —2 107
a v, ; as s y Q4 Qe ) ( )
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where
ny = 2a3*12 + a2*l, <w13 (a5(2°1,% = 3°1,) + 4as™T, ) — 4a7”"[2)

+ad (“1,7 + 21Ty + 2T, (", — ) — 4“[22)>

(108)
+ 2(1607w12< — WI3 (05(2‘"]12 — 3“72) + 2(18‘"[1) + 2@9‘"[1‘"[2)
+ 2(17(@50/7 - 2@809)‘"]22(‘"[12 - 3“72) s
ds = ag"1;%(2a¢ — 3as™1,) + dagag™l,"1,*I; + 2a2"1,*(*I,* — 3*L,) ,
and
fig = 26312 + a2*l, (WI3 (a5(2°1,” = 3°1,) + 4as"1, ) — 4a7w12>
+ a1, (3&3”"[32 + gy ™1, (2°1,> — 3"1,)
+a3 ("1, + 2°1, 7T, + 21, (1T, — 1) — 4w122)) (109)
+ 2agar"1, < - (ag,(QV’VIl2 - 3"L) + 2@8”’"11) + 2a9W11W12>
+ 2a7 (G507 — 2asdo)" 1,7 ("> — 3"1,) ,
ds = ag™1,>(2as — 3a5"1,) + 4aeto”I, "1, I, + 2a2"1,*(*I,” — 3"1,) ,
with
g = —%7 5 = ——"—""5 , ar= y ag = y Qg = ————— 3
" as "1y ° ag dy” ! ag do "1, ’ ag do’ 0 ag dg
_ fl3w12 _ ].
a3 = ————5_—— ay = —
3 Qg d92 WI3 ’ 1 a4 ’
(110)
where
dy = a1y (as™1," + a5 T, (I, T, — 61,) + 4 a1,
(111)

ny = ag"1y* (as“L? + a5 "I, ("I, "I, — 3"13) + 2 ag™1;)
+ag "L 1 (= ag ™, + as ™, T, — 6ag ) + a3V VL (ML -2V M) (112)

ng = ag ™, "I," + ag (—ag + ag™1,) "I, + ag (ag + as™T,) 1,

113
+ ay w[2 (2 Qg w[2 — as w[1 WI3) . ( )

The other factors ng, ns, ng entering eqn (110) are given by longer expressions and are
reported in Appendix E for the sake of completeness. Factors ni3, ds and ng3, dg appearing

30



in the expression of az in eqns (107c), (110f) are linked by the relations

1 /YL \° f2d ~ wIwI\? f2d
ﬁ3:w_< - 2) / 43ﬁ3; d3:< ! 2) I dy (114)

w w I
ag™1, do ag™1, dy”

where dj is already given in eqn (108b) and factor f is expressed by
f: —2a6“’13+3a7‘”12+a9‘”11“’12 . (115)

Solution (25) is the instance of the solution set found here that embeds the larger num-
ber of coefficients and relevant tensorial terms of the general orthotropic representation
(only two coefficients are lacking, the ‘non-shear’ a;,a; and the ‘shear-like’ ag, Go). This
solution forms with Solutions (2) and (3) a family of progressively-enlarged solutions and
comprises them as particular cases: Solution (3), when ag=0, a9=0; Solution (2) when
ag=ag=0, ag=a9=0. Damage-effect tensors (106) formally lead to compliance and stiffness
embedding all tensor terms.

Solution (26). Another particular case of Solution (25), alternative in a sense to Solu-
tion (3), is obtained by setting a;=0, a;=0 in Solution (25), instead of a9g=0, Gy=0 as in So-
lution (3), thus by taking symmetric damage-effect tensors embedding the six-coefficients
sets (as, a4, as, ag, ag, ag) and (as, aq, as, ag, as, o) (lacking only coefficients ay, as, a7 and
ai,ds, ar), namely:

A=a; (WRI+IQW)+as WAW+ a3 WQRW+ a; w? Q@ w?
W2RW+wRW) +ag (WRI+I®w?);

(
+ as (
- (116)
A=ady (WRI+IQW)+as WRAW+a3 WQR W+ a5 W’ @ w2
+as (WQW+WRW)) +ag (WRI+I®w?),
which form a complementary inverse pair provided that
ag ny ng I,
a3 = =73 ,2° 8= Srgwy o0 W= TGy
1,°d 1,° "1, d 1.
2 /8 2 - 3 a8 2 (117)
B Qg Ty . ng . . I,
a3 = — = = y = 5=, = = —Aegz7
where
ng = 2agag "I, Ty (—6"1," "I, + T, ("I, + 61,%))
+ ag?*1,> (4 T3V, + 18, 1,2 — 1,2 (V1,7 + 18 WI32)) :
ng = ag ag"1," Ty — ag ™17 (a5 ™1, ("1, T, — 3™5) + 2a6™T;) (120)
+ ag? ™1, 1> ( —v,2 427, WI3) :
and B

31



Ay = 2agag *L, "Iy (—6"1," Iy + I, (*," + 671,%))
+ag ™1, (= a5 ™, ("1, T, = 3¥1,)° + a (1, — 471,71, T + 6 °1,7)) (122)
+ C_lg2 W[22 (4 wll?) W[2 wlg +18 W[2 w132 i wll2 (W[23 +18 wI32)) :

My = @ g W[23 I3 — as w[32 (@5 “I, ("I, ¥I, — 371;) + 2 ag W[3)

o _ o 123
+ ag? "I, ¥L (1,7 + 271 V) (123)
with
Gs = H g = — N5 = ag"ly — ag™l, "1, :
ag WI3 a6(a6 — 3@9)2 d3 w[2 WI3 aﬁ(a6 - 3a9)w13 (124)
_ n3"1, —— g s — —
4= ag d3 WI3 48 (ZG(CLG - 3(19) d3 w]32 M= a4 ’

where dj is already given in eqn (108b) and

fis = 2ag ag L, "Iy (M1, "1,? = 2°1,* VI, + 21,1,
+ag "L, (—2a5"L° + 3a5 ™1, "1, "]y + ag ("7 — 271, 1) ) (125)
+ agQ w[22 (w]'12 w[22 o 2w]'13 w]'3 4 10 wIl w]'2 w[3 —4 (w]'23 4 3w]'32)) ’

iis = 206> "I,* (= 2a6™L,7 + 405 "L, + 2051, "I — Bas ™1, 1, ;)
ag VL (<L A AT VL AT = 24 VT4 24, VL, V4367, T
— dag?ay "1, "1 (ag™T, Ty + a5 (271,71, = 3717 "I, + 61, T3) )
+2ag a9’ "1, "Iy ("1, + 1812V, VT, — 24,2 7T, — 47T, (27,7 + 9717
+ ag ag? *1,* 17 (2051, ("1,7 1,7 = 31T + 671, 7L, VT, + 91,7
+ag (371,717 + 16™1,° — 81, Iy + 1271, 1, "I, + 36 1,%) )

(126)
)

fs = a6®“I,* (= 20617 + 405", + 20461, Ty — Bag ™, M, ;)
— 2agay? 1,7 "Iy (=471 + 1L, + (" — 1271) )
— agag *I, "I* (a(371, *1,7 =2 1,7 “I;+4 71, ") + a5 ™1, (271, 1, = 31, “I;+6 ™1, 1) )
+ag> L ("1 71,7 = 2V T+ 14 M — 12V — 4, (L + 3V?))
(127)
Damage-effect tensors (116) formally lead to compliance and stiffness embedding all tensor
terms.

5 Derivation of the solution set

In the present section the reasoning that has led to non-symmetric Solutions (11)-(13)
(and ‘twin’ ones (14)-(16)) and (17)-(20) is briefly presented. Two different approaches
have been followed, which make use, respectively, of multiplication tables of tensor ad-
dends pertaining to the general orthotropic representation, and of Sherman-Morrison’s
formulas allowing the inversion of multiple rank-one updates of a given non-singular
fourth-order tensor.
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5.1 Derivation based on multiplication tables of orthotropic ten-
sor addends

Trying to enlarge known Solutions (0.2) (‘basic’ Valanis-damage, founded on single coef-
ficient ag) and (0.3) (‘extended’ damage, based on coefficients set (ag, ags)), and foreseen
Solution (1) (Valanis-type damage-effect tensor, based on coefficients set (ag,as3)), one
is hinted first to attempt keeping the terms attached to the three coefficients ag, as, ags
all together, and then, to start with, to try adding further terms associated to the other
‘non-symmetric’ coefficients azs, ags.

This way of thinking is corroborated also by the independent consideration that,
by exploring a possible multiplicative family of solutions, one finds out that not only
the ‘extended’ structure of Solution (0.3) can be decomposed in the formed product of
the isotropic structure (0.1) and the ‘basic’ structure (0.2), symbolically (az, a1): (ag) —
(ag, agy), but also that the structure of Solution (0.3) multiplied by the isotropic (0.1)
is ‘eingenbased’ (in the sense that it spans the same tensor products space), symboli-
cally (a9, a1) : (ag, aga) — (ag, agy). Also, the multiplication of Valanis-type damage-effect
tensor Solution (1) with the isotropic (0.1) spans the tensor terms attached to the new
coefficients set (ag, as, age, azz), symbolically (as, aq): (as, as) — (ag, as, agy, az2). So, this
appears to be a candidate for the solution set. Also, this set is in turn ‘eingenbased’ since
a further multiplication with isotropic Solution (0.1) renders the same tensor terms, sym-
bolically (as, ay): (ag, as, age, a72) — (ag, as, age, az2). On the other hand, a new structure
based only on (ag, as, age) (no ary) does not arise from the multiplication of the previous
solutions and at the same time turns out not to be ‘eingenbased’ after multiplication
with the isotropic one, symbolically (as,aq): (ag, a3, ags) — (ae, as, ags, arz). So, one is
led to conjecture that only the full set (ag, as, ags, azs) should be a solution case, while
(ag, az, age) might not. Then, as an additional step, although this set is not generated from
the previous products, one attempts as well to add the term attached to the coefficient ag,
and discovers that this new set of terms is also ‘eingenbased’ after multiplication with the
isotropic structure (0.1), symbolically (as, a1) : (ag, as, aga, a2, ags) — (ag, a3, g, a7a, ag2)-
Although this does not prove necessarily that this structure is of dual type, since this last
case contains as well the previous, one is led to inquire if the set (ag, as, aga, ars, agy) and
the relevant particular cases do belong or not to the sought solution set, and to attempt
to work-out the complete expression of the dual coefficients set (ag, as, o1, ar1, s )-

One way to do that is forming the product between trial damage-effect tensors A with
coefficients set (ag, as, ags, aza, age) and dual damage-effect tensors A with coefficients set
(ag, as, ag1, ar, dgy ), and posing the equality A:A=I®1T for any damage state w, w. To
build up such product it is convenient to prepare a multiplication table with all the tensor
terms involved in the operation. The multiplication table pivoting on the coefficients sets
(CLG, as, ago, 72, a82) and (66, as, agi, ary, dgl) is reported in Table ]_, Appendix D.

Table 1 shows that, besides the identity I® I, four distinct tensor terms fill the ta-
ble entries (with ‘complementary symmetry’ with respect to the table diagonal): w®w,
I®I, w®I, IQw. These terms are already generated at the level of three-coefficients
sets (ag, a3, ag2) and (g, as, Gg1). Since the coefficient ag is fixed by the ‘orthogonality’
condition @g=1/ag, which is necessary to make up the identity I®I (see also ‘shear-like’
Solution (s.b)), from Table 1 it appears that: i) it should be possible to determine the
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four coefficients as, agy, a7y, ag; by setting to zero the four factors pre-multiplying the four
extra terms exceeding the identity in the formed product A:A; i) it might be possible to
determine the reduced cases with either a;9=0 or age=0 if an additional constraint on the
remaining four unbarred coefficients holds; #i7) it might not be possible to determine the
reduced case with a7s=ago=0 unless if two additional constraints on the remaining three
unbarred coefficients hold; iv) there appear clearly the reduced particular cases already
known as Solutions (0.3) and (1), which both span a two-dimensional base (see the two
internal frames depicted in Table 1).

By exploring further the possibility i) remarked above one is left with the solution of
a linear system of two pairs of equations, which is governed by a 2x2 coefficient matrix
and can be written as follows:

ag + 3(13 + agotrw aztrw + 3(182 as , arn 1 as , agg (]_28)
agotr w + 3(172 ag + 3(192 + artrw asi , Qg1 Gg arg , A9 .

The solution of this system of equations in the unknowns as, agi; a7, ag; is straight-
forward and leads precisely to the expressions of the coefficients given in Solution (13),
equs (67)-(68). Notice that the determinant of the 2x2 coefficient matrix in the linear
system (128) is given by ds, eqns (68a,c).

At this stage, it is also possible to check that possibilities i) listed above do work
through the constraints (59), (64) and do originate Solutions (11) and (12). This can
be checked as either a particular case of the previous solution or directly by applying
the same procedure above for imposing that the candidate dual damage-effect tensors are
indeed inverse of each other. On the other hand, it is confirmed that possibility i) listed
above is not a solution instance, namely coefficients sets (ag, a3, ag2) and (ag, a3, @91 ) do not
form a dual base. Indeed the four requirements on the coefficients are mutually excluding
the possibility to have at the same time a37#0 and ag2#0, and this leaves open only the
reduced options of the two particular cases already known, namely Solutions (0.3) and (1).
By further inspecting Solution (13) it is also possibile to exclude any other reduced case
different from those already outlined.

As already noticed in Section 4.4.1, despite the similarity between Solutions (5)
and (11), it is not possible to enlarge Solutions (11)-(13) with a further introduction
of the terms I®I attached to a; ad a;. This is revealed by the consideration that the in-
troduction in Table 1 of a row and column corresponding to new-inserted terms (a;) IQI,
(@1) I®T would lead to two new tensorial terms outbalancing the number of the single
extra coefficient that could be fixed (see also comments in the table caption).

5.2 Derivation based on Sherman-Morrison’s formulas

Instead of using multiplication tables to work around the problem of making the product
of candidate dual damage-effect tensors equal to the identity, an alternative approach is
that of performing first the inversion by using Sherman-Morrison’s formulas and then of
checking if the obtained inverse does display the complementary structure, may be under
specific conditions that need to be fulfilled. Sherman-Morrison’s inversion formulas give
the inverse of a non-singular fourth-order tensor modified by multiple rank-one updates.
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Such formulas are listed in Appendix C for the cases of one and two rank-one updates,
eqns (C.1), (C.2), respectively.

In exploring the damage-effect tensor (58a) of Solution (11) as a possible candidate, one
may interpret it as a single rank-one update A;=Ay+a; B;®C; of Valanis-type damage-
effect tensor Ag=as w @ w+az w@w, eqn (17a), Solution (1). Indeed, this tensor can be
adopted as ‘pivoting’ reference since it has a known convenient inverse with complemen-
tary structure, namely Aj'=1/as W ® W—a3/(ag(3a3+ag)) w@w. If one then formalizes
that eqn (58a) can be interpreted as a single rank-one update of Aq by taking a;=1, B;=I,
Ci=agpw?+as,w, that is

AN=aWRW+azsw@W; A =~A+1I® (agoW*+apw), (129)

Sherman-Morrison’s inversion formula (C.1) can be applied to get A;'. In doing so
one gets first the second-order tensors A;':Bi=1/as w?—a3/(as(3az+ag)) trw w and
Ci: Ay =agy /a6 1+c¢/(as(3az+ag)) W, where c=agars—azagetr w, and recognizes that a
dual structure can be acquired by setting ¢=0, which leads precisely to constraint (59a),
i.e. agaro=asagsotr w. Then, this constraint is imposed on the denominator factor D; in
formula (C.1), to get D;=1+C;:A;":B;=(3ags+as)/as, and the final expressions of the
sought dual coefficients ag1, @71 in eqn (58b) are identified, which are indeed those given
in eqns (60c,d). Thus, Solution (11) is fully recovered within the Sherman-Morrison’s
approach.

A similar procedure could be applied as well to get ‘reciprocal’ Solution (12), since this
case may be seen as well as a single rank-one update of the same Valanis-type reference
tensor Ag, namely A;=Ag+(agy I+ag; w)@w?2. Inversion formula (C.1) would then lead to
the constraint (64a) and to the dual coefficients ag;, ag; in eqns (65¢,d).

An alternative of the procedure above could consider the damage-effect tensor (58a)
as formed by two rank-one updates Ay=~A¢+a; BiRC; +as Bo®Cs of the ‘basic’ damage-
effect tensor Ag=ag w ® w, Solution (0.2), which is characterized by the simpler comple-
mentary inverse Ay'=1/a¢ w ® w. Actually, this leads indeed to an independent derivation
of more general Solution (13), since in this way Solutions (11) and (12) can just be seen
as the particular cases recovered for ago=0 and a;3=0, respectively. As a matter of fact,
one should notice that, since Solutions (11) and (12) work through constraints on the
coefficients, it is not feasible to interpret directly Solution (13) just as a single rank-one
update of the former cases. Then, the candidate damage-effect tensor (66a) is inspected
for identifying the update factors. One way to do that leads to, same as before, a;=1,
B,=I, C,=agpyW’+a7uw, and to as,=1, Bo=w, Co=ag,W’+asw, i.e.:

MN=asWwRW; Ay=~A +13® (apW’+ anw)+w® (agW? + azw) . (130)

To apply inversion formula (C.2), one gets first the second-order tensors A;':B;=1/as w2,
Ci:Ay' =agy/ag I+ar/ag W, Ay :Bo=1/as W, Cy:Ay'=ags/ag I+as/ag W, and the scalar
factors Cp:Ay' :B1=(3aga+artrw)/as, Co:Ay':Ba=(3az+asatrw)/ag, Ci:A;':Ba=(3az+
agatr w) /ag, Co: Ayt :B1=(3asz+astr w)/ag. This leads to evaluate the denominator factor
Dy in formula (C.2) as Dy=dy /a62, where ds is the denominator factor already given in
equs (68a,c) and, finally, to recover the expressions of the dual coefficients as, agy, ar, Gs;
given in eqns (67)-(68). An equivalent way to operate could consider the damage-effect
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tensor (66a) as obtained by the two updates Ao=~A¢+(arl+azw)@w+ (agl+agaw)Qw?.
Following the same steps as before, one would be led to the same relation Do=dy/ag?,
with dy now given in eqns (68b,c), and to the same expressions of the coefficients. Notice
that the inversion operation generates just the complementary terms, so that the solution
succeeds without any constraint on the coefficients. Similar procedures could be applied
as well to derive ‘twin’ Solutions (14)-(16).

In exploring now single rank-one updates of the identity term Ay=a, I ®I as candidate
solutions, i.e. Aj=a;I®I+a, X®Y, Sherman-Morrison’s inversion formula (C.1) imme-
diately reveals that a complementary structure is achieved by taking Y=X=X"!, i.e. that
any tensor pair of the form

A =aI@T4+a, XX ; l\lzaiI@I%—amX@X (131)
2

does form a complementary inverse pair, with a,=—a,/(as(3a;+az)). The same holds
as well for the ‘twin’ forms Aj=a, I® I+a, X®X, Aj=1/a; IQ@ I+a, X®X, where again
al=—al,/(as(3al+as)). Besides of course the isotropic case, Solution (0.1), this leads
to consider the possible ‘twin’ instances A=a; I @ I+a w@w, A'=a, I ® I+0o' w®w based
on X=w, and A=a, IQI+BwW2@W?, A'=ay I® I+ Ww?@w?, based on X=w?. Through
the application of the Cayley-Hamilton theorem applied to w, these considerations direct
the solution search towards non-symmetric Solutions (17)-(20), which in turn conduct
immediately to symmetric Solutions (21)-(24).

Finally, the Sherman-Morrison’s approach could be further applied in the present con-
text to explore additional candidate solutions interpreted as subsequent rank-one updates
of known ones. However, it should be said that this procedure can be handled conve-
niently by hand only until when the ‘pivoting” damage-effect tensor used in the inversion
operation possesses an inverse with conveniently simple form.

6 Conclusions

A set of dual orthotropic fourth-order damage-effect tensors possessing complementary
structures has been derived. It includes twenty-siz new solution instances, fifteen of which
are symmetric (Solutions (1)-(3), (5)-(10), (21)-(26)), and eleven non-symmetric (Solu-
tions (4), (11)-(20)). Other solution cases have not been reported in the paper since
they are expressed by relations even more involved than some of those presented here.
Most of the obtained solutions are particular cases of others and work through constraints
on the coefficients. Siz of the solutions presented here succeed in reaching the com-
plementary structure without constraints on the coefficients: three are symmetric (Solu-
tions (1), (7), (9)), and three non-symmetric (Solutions (4), (13), (16)). ‘Shear-like’
generators Solutions (s.a), (s.b), (s.c) (Section 4.3) have led respectively to: eight Solu-
tions (17)-(24), fourteen Solutions (1), (4)-(16), four Solutions (2)-(3), (25)-(26). All
the solutions without constraints on the coefficients belong to ‘shear-like’ generator Solu-
tion (s.b).

Although the complete enumeration of all convenient particular cases of the general
solution of the problem at hand does not appear easy to be handled, the solution instances
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provided in this paper furnish new interesting orthotropic forms of damage-effect tensors
that satisfy the duality requirement. The latter tensors lead to damaged compliance
and stiffness embedding less restricted forms of orthotropic material symmetry than that
of Valanis-type, with the simultaneous compromise, from an algebraic point of view, of
keeping the formulation at a reasonable degree of complexity.

While the present study generally addresses the algebraic properties of complementary
fourth-order tensor inverses, the ultimate convenience of using any of the damage-effect
tensors solutions advanced here in the final development and implementation of a con-
stitutive model of orthotropic elastic damage remains to be explored on analytical and
numerical grounds and, obviously, and most important, validated on its physical signifi-
cance.
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Appendix A: Representations of orthotropic tensors

Consider the orthotropic non-symmetric representation (6) of fourth-order damage-effect
tensor A as an isotropic tensor-valued function of symmetric second-order damage ten-
Sor W
A=aI@T+aI@l+awedw+a (WRI+IQW) +as W@ W+ ag WO W A1)
Al
+anwRI+arnI@wW+ag WQW+ass W W24 agy w?RI+ ag I @ w2,

Following Zysset and Curnier (1995), account for the spectral decomposition of tensor
w: w=w;0,4+w2:05+w303; O,=0;®0,, where w; and o;, i=1-3, are the eigenvalues and
unit orthonormal eigenvectors of w. The principal directions defined by o; play the role
of orthotropic damage axes and O; that of the relevant structural orthotropic second-
order tensors. Notice that O;4+0,+03=I. Also O; ® 0,=0,®0;, i=1-3. Fourth-order
tensors O,;®0;, i=1-3, and idempotent tensors (O; ® O;4+0,® O;), i<j=1-3, provide a
decomposition of the symmetric identity (Walpole, 1984):

3 3

F=IRI=) 0,®0,+ > (0,80,+0,80;). (A.2)

i=1 i<j=1

Then, the damage-effect tensor (A.1) admits the following general orthotropic repre-
sentation (see also Walpole, 1984):

3 3 3
i#j=1 i<j=1 i=1

where the nine ‘Lamé’s-like’ parameters [;;, ¢, j=1-3 and six ‘shear-like’ parameters m;;,

1<j=1-3 are given in terms of coefficients a;, 1=1-6; a;1, a;o, 1=7-9, and principal values

w;, 1=1-3, as follows:

— 2,2
lij = a; + a3 w;w; + a5 wiw;

Qmm — a2+a4(’wi +w])+a6wzw3 , Zéjzl—g
Notice that the three parameters mq1, mag, msz are not independent from the other three
‘shear-like’ coefficients mqo, mo3, m3, since they are related by:
(w2 - w3) mn = (wl - ’LU3) mio — (wl - ’LUQ) mis ,
(w3 - w1) Moy = (wz - wl) mag — (wz - ’LU3) mi2 , (A-5)
(w1 - wz) ms33 = (w3 - ’wz) mi3 — (w3 - wl) ma3 .
So, the set of twelve independent parameters in eqn (A.3) may be identified by the nine
lij, 1, j7=1-3, and the three m;;, +<j=1-3.
The twelve non-zero components of A in the principal axes of damage become:

ij
Ajiii = Ly +2my; = ay + ay + (2, + a7y + ary) w; + (ag + ag + agy + agy) W}
+ (agy + agy) wi +azw), i=13. (A.6)
Aijj = Ly, 1#7=13;  Ayij=my, 1<j=13.
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These non-zero components may be depicted in the 6x6 matrix representation introduced
and discussed by Walpole (Walpole, 1984, eqn (45)), in which diagonal entries are rep-
resented by the diagonal matrix diag{ A1111, Aogoa, As3z3, 241212, 2A9393, 241313} and the
fourth-order symmetric identity I°'=I® I maps to a 6x6 identity matrix:

( l1142mqq lio lis ] ( 1
loy loo+2mi99 lo3 3L3
B l31 l32 l33+2m33 o g
[A]= T = (A7)
2m23 2M
L 2y | L s |

This matrix may be seen as the composition of an upper-left 3x3 submatrix 1 with
‘Lamé’s-like’ entries /;;, 7, j=1-3 (independent of coefficients a,, a4, az) and of a diago-
nal 6x6 matrix 2m=diag{2myy, 2mas, 2ms3, 2my, 2Mmo3, 2my3} with ‘shear-like’ entries
2m;;, 1<j=1-3 (dependent only on coefficients a,, ay, az). The three upper diagonal en-
tries (A.6a,b) depend on all coefficients a;, i=1-6; a;1, a;5, i=7-9. Alternatively, this
originates the L-2M decomposition in eqn (A.7b), where L is the upper-left 3x3 subma-
trix of [A] and 2M=diag{2ms, 2ma3, 2m13} the lower-right 3x3 diagonal submatrix of
[A]. The algebraic decomposition of fourth-order tensor A in terms of the symbolic L-2M
representation has been discussed by Walpole (1984).

When the eigenvalues wy, ws, w3 are distinct, the nine entries [;;, i,j=1-3, are in
one-to-one correspondence with the nine coefficients ay,as, a5, ay, a9, agy, agy, Ggy, g2,
eqn (A.4a), while the three coefficients 2m,;, i<j=1-3, are in one-to-one relation with the
three coefficients a,, a4, ag, eqn (A.4b). Posing for compactness

“d = (wy — w,y) (wy — w;) (w3 —wy) (A.8)

the first set of nine relations inverses to (A.4a) in terms of [, i, j=1-3, is given by:

159

a1wd2 = w%“’%(“’? - w3) n+ wl (w1 ) 99 T w%w%(wl - w2)2133
+ wlewg(wg w3)( wl)(ll + l21)
+ w1w2w3(w2 - w3)( w2)(l13 + l31)
+ w1w2w3(w3 - wl)( )(l23 + l32) ;
az"d® = (wh — w3)?ly + (W] — w3)?lyy + (W} — w3)%ly
+ wg - wg (w§ ;)(112 +15) (A.9)
+ (w5 — wi)(wi — w3)(ly3 + l3;)
+ wg - w% (w% )(123 +139)

Ly + (wy — w3)?lyg + (w0 — w2)2l33
wy — w1)(lyg + lyy)

wy — wa)(ly3 + 1)

wy — wa)(log + l3o) ;

~— ~— ~— ~— \/\/\/\/

—_~
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—a,,"d” = wyws(wy + w3)(we — w3)2l;; + wywy(ws + wr)(wz — wy)3lyy
+ wywy(wy + wy) (w1 — wy)?la,
+ wywy(wz — wi)(wi — w3l + wows(wy — wz)(wi — wi)ly
+ wywy(wr — wa)(wh — w3)lyy + wowy(wy — wz) (wi — w3)ly
+ wywy(wr — wa) (Wi — wi)loy + wywy(ws — wi) (Wi — w3)lg ; (A.10)
— 0y "d® = Wyws(wy + ws)(wy — ws)?ly; + wyws(ws + wy)(ws — wy)?ly, .
+ wywy (wy + ws) (w1 — wy)?lay
+ wowy(wy — wy) (Wi — wi)lyy + w wy(ws — wr) (W — w3)ly
+ wowy(wy — wy) (Wi — w3)l + w wy(wi — wa) (W — w3)ly
+ wywy(wz — w) (W] — w3)ly + w wy(wi — wa) (w5 — wi)lyy ;
—ag,"d® = (wy 4+ w3)(wy — w3)?l;; + (w3 + wy)(ws — wy) %y
+ (w1 + ws) (wy — ws)?ls,
+ (W — w)(wi — wi)lyy + (wz — wr) (W] — w3)ly
+ (W — wz) (Wi — wi)lyy + (w1 — wy) (W — w3)ly
+ (w3 — wi) (W] — wd)lyy + (w1 — wa) (w5 — wT)lyy ; (A.11)
—ag,"d* = (wy 4+ ws) (wy — w3)?ly; + (w3 4 wy) (w3 — wy)?lyy .
+ (wy + wa)(wy — ws)?ls,
+ (w3 — w1) (Wi — wi)lyy + (wy — wz) (Wi — wi)ly
+ (w1 — wo) (w3 — w)lyy + (wy — wz) (Wi — w3)ly,
+ (w1 — wo) (w3 — wi)lys + (w3 — wi) (W] — w3)ly ;
aglwdz = wywy(wa — w3)?ly; + waw; (w3 — wi)2lyy + wywy(wr — wa)?lyy
+ wyws(we — w3) (ws — w1)lyy + wyws(we — w3) (ws — wq)lsy
+ wywy(we — w3) (w1 — wa)ly3 + wyws(we — w3) (w1 — wa)lyy
+ wywy(ws — wr) (w1 — wa)ly; + wyws(ws — wy) (wy — wa)lsy ; (A12)
‘192Wd2 = wowy(wy — w3)?ly; + waw, (wz — w1)2lyy + wywy (w1 — W)y .
+ wyws(we — w3) (w3 — wq)lyy + wyws(we — ws) (ws — wq)lsy
+ wyws(we — w3) (wy — we)ly3 + wywe(we — ws) (wy — we)ly,

+ w1w3(w3 — wl)(wl — ’U)2)123 + wle(wg — wl)(wl — w2)l32 s
while the second set of three relations inverses to (A.4b) in terms of m,;, i<j=1-3, is given
by:

—ay"d = wi(wy — wy)2my +wi(Wy — w3)2Mmyy +wi(wy — wy)2myy
a"d = wy(wy — wy)2myy + Wy (Wy — w3)2Mg3 + Wy (ws — wy)2myy (A.13)

—ag"d = (W —wy)2m+ (W — wy)2mgz + (W3 — wy)2myy
Representations (A.1), (A.3) may be compared to the typical orthotropic represen-
tation of a non-symmetric fourth-order tensor in structural axes o; in terms of twelve
coefficients l;;, i#j=1-3; l;, m;, i=1-3 (see, for symmetric tensors, Boehler, 1987, eqn (30),
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p. 62, and Bigoni and Loret, 1999, eqns (A.1)-(A.2); Curnier et al., 1995, eqn (2.27)):

3 3

i#j=1 i=1

Comparison with eqns (A.1), (A.3) confirms the orthotropic character of the former repre-
sentations and shows that the six coefficients [;;, i#j=1-3 are given as before, eqn (A.4a),
while parameters m; are related to m,;, i<j=1-3, by 2m;;=m;+m;, or conversely

2my = 2(mag + maz — Mag) = as + 2a,w; + ag(wwy + wiws — waws)
2my = 2(myg + Mmog — Ma3) = ag + 2a4ws + ag(wiwy + wews — wiws) (A.15)

2m3 = 2(m13 + mo3 — mlg) = a9 + 2(14’LU3 + aﬁ(wlwg + woWsz — wlwg) s
and the three parameters /; are linked to the three l;;, i=1-3, as l;+2m;=l;;+2m;;, namely:

ly = 1y + 2(m11 - ml) =a;+ (a71 + a72) wy + (a3 +ag +ag; + a92) w%
+ (a81 + a82) wi)’ +as wil — Qg (wle + wywy — w2w3) )

ly = lyg +2(Myy — my) = ay + (a7 + azy) wy + (a3 + ag + ag; + ag,) w% (A.16)
+ (ag) + agy) wh + a5 wi — ag (W wy + Wyws — W ws) .

Iy = I3z +2(myg3 — my) = ay + (a7 + azy) wy + (a3 + ag + ag; + agy) wg
+ (ag; + agy) wg + as w§ — ag (W w3 + Wowy — Wy wsy) .

Notice that both m; and [; depend on all principal values of w, while m;; and [;; depend
only on the direct eigenvalue w;. Indeed m;#m;; and [;#l;; precisely differ accordingly:

Appendix B: Rivlin’s tensorial identities

The following Rivlin’s tensorial identities involving a symmetric second-order tensor w
and the identity I in a three-dimensional inner product space are here collected:

(W RI+I®w?) = (WQRI+Iow?) — (W@w-—waw)—" (IRI-1IxI)

_ _ (B.1)
+ (WEI+18w) — (weI+Iow));
(WBwW+wWRW?) = (WRW+WRW?)+", ( WAW—WQRW) B2
B.2
- (IQI-1I®I);
W W =w@w +", (WlwW —-wQRw)
(B.3)

_ wb}((w@l—l—l@w) — (W®I+I®w)) ’

where *I,, *I,, *I, are the three principal invariants of w, *I,=tr w, *L,=(tr> w—trw?) /2,
“I,=det w=tr w3 /3+tr> w/6—tr w tr w?/2 entering the Cayley-Hamilton theorem applied
to w, namely w®—*I, w?+"I, w—"T, I=0.
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Eqns (B.1), (B.2) and (B.3) can be extracted, respectively, from 3x3 matrix identities
(4.22), (4.25) and (4.26) in Rivlin (1955), where eqn (4.22) is a generalization of the
Cayley-Hamilton theorem and eqns (4.25), (4.26) are derived by repeated application of
the same theorem. Eqns (B.1), (B.2) and (B.3) were listed by Rosati (2000) in similar
form in his eqns (31), (30) and (34), respectively (here the symmetrized dyadic product
is just used). Eqn (B.1) was also given by Lam and Zhang (1995) in their eqn (3.14).

Appendix C: Sherman and Morrison’s formulas

The relations of the inverses of one and two rank-one updates of a given non-singular
fourth-order tensor are here given. They can be extracted from the formula of Sherman
and Morrison (1950), which provides the inverse of a square matrix modified just in one of
its entries. Additional information on the spectral properties of multiple rank-one updates
is available in Rizzi et al. (1996), Appendix A.

Given non-singular fourth-order tensor Aj, second-order tensors By, C; and scalar a4,
the following relation holds:

A = (Ao + ar B1®Cl)'1:Aal—%AalzB1®Cl:Aal,
1

N det AO

A further application of eqn (C.1), given additional second-order tensors By, Cs and
scalar ay yields the inverse of two rank-one updates of Aq:

A;l = (AO + aq B1 (034 C1 + a9 B2 X Cg)_l

provided that D, =1+a; Cy: A(')l B #0.

Cll(l + a9 CQ : Aal : B2)

= Ay — D, A B ®Cy A
1 C,:A':B
_a2( a1 © A ) A By ® Cy it A
Dy
C,:A':B
ay ag( 1 0 2) [2\61 : B1 ® C2 . Aal
D,
a1a9(Cy: A : B - -
10 2D 0 1B A By Gy A (C.2)
2
. detAg -1 -1
provided that D, = A (14 a; Cy: Ay :By)(1+as Co: A : By)
€t Ag

—ajay (Cy: Ay :By)(Cy: Ay :By) #0.

Eqn (C.2) could also be rewritten in terms of only two rank-one updates of A;! by collecting
terms with either common factors By, B, or C;, Cs.

Appendix D: Multiplication table of orthotropic ten-
sor addends
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ay

(a3) w@w | (aGg) WRW | (dg1) W2 QI | (an) wRI | (Gg;) W Q@ W
(a3) wW®w 3 weWw wWRWwW| trw w®I 3 wl|trw wew
(ag) WQRWwW WQR W I®I I ®I1 w® I I @w
(ago) T@W? [[trw I QW I® I 3 I I trw IQ®I 3 1
(a72) T ®@wW 3 I®w Igw | trw I ®I 3 II|trw I Qw
(ag) W W? [[trw wWQ W w® 1 3 wol|trw wl 3 wWoew

Table 1: Multiplication table of tensor terms belonging to the solution set. Notice the ‘complementary symmetry’
of the table entries with respect to the table diagonal. Also, note that the five tensor terms IR I, ww, IQL, w1,
I ® w filling the table entries are already generated through the first three coefficients as, ag, ags and as, ag, ag; -
The three frames indicate the instances of the solution set that work without constraints on the coefficients and
are based on the complementary pairs: (1) (as,as), (as,as); (0.3) (as,ag92), (as,a91); (13) (as,aq, aga, ar2, ass),
(a3, ag,ag1,a71,ag1). Solutions (1) and (0.8) are particular cases of (13). Additional ‘reciprocal’ solutions (11)
(as,aq, ag2,a72), (as,a¢,a91,a71) and (12) (a3, as, a9, ass), (as,ag,agr,asr) are also obtained as particular cases
of (18) through the constraints on the coefficients arising respectively from the conditions aga=0, ag1=0 and
a72=0, a71=0. Four additional ‘twin’ solution cases can be obtained just by inverting the roles between coefficients
with and without bars: (4) (as,a91), (as,a92); (14) (as,ae,ae,ar1), (as,ae,a9s,ar2); (15) (as,as,a91,as1),
(a3, a6, a92,a82); (16) (as,as,a91,ar1,as1), (as,as,aga,ar2,ass). Insertion of a row and column corresponding to
(a1)I® I and (a;)I® I would add to the table entries the two new complementary terms w? ® I and I ® w2 in
correspondence of row (ag) and column (ag), respectively, so that the solutions indicated here cannot be enlarged
by adding the I ® I terms corresponding to the coefficients a; and a;.



Appendix E: Factors of Solution (25)

The expressions of factors ng, ns, ng entering eqn (110) are reported below:

fis = ag "I,* (ML — AT ALE T 4 4T VL + 90T
+ 6,2 — 671,71, (1, + 371,))
+ a2 It [ a2 + 2 a8 7,2 (a5, (T, T, — 3Y5) + 2 ag™;)
+ a5 ag T, *I; (4121, + TL,° — 24~ *T,) — 2a2 ™1, (“I,> — 4™, *I,)
+ a2*L? (“1,2 1,2 — 61, "1, "I, — 61,2 "I, + 181, WI32)]
+ 243 "L, [ag T, ( — 27T, — 67122 L — 67,V
+ 97 LV 4T (U, + 127)
+ag (2712 L2 VT, + 61, 17 = V12 (1 + 8V, VL) + 7T, (4L, + 6717
+ a2 "> "I,? {ag L2 (Y22 — 1272, — 6712 T + 457, VL)
+ag (271,212, — AL+ 60T (V1 4 VL) 40T (U, = 207, 7?)
= ag™Ty [4as T, Ty (1,7 VT, = 51,7 + 371, 7T) + a5 (4, + 671, 1,1,
= 1871, "L, 17 + 37 (471, + 3717) — 2712 ("L + 6717 )| |
+ a2T,> {2 a2¥1L2 (271 "L — 9L ",> "I, — *1,>*I, + 10 *[,* “1,%)
+ 1,7 (a5 a6 ™1, Ty (81, T, + T71,° — 601, ™1y — 203 ™1, (*1,” — 101, 1)
+ a2 L2 (1, — 127,771, T — 67, + 457, ) )
— day™1,"1,"I, [5 ag "Iy (“I,2 — 271, 1)
+ a5 *1, ( — 2" 2V, — 8 L2V, + T, (V1 + 15W132))]}
— 2ag a9 T, "I {262 VT, (2, V1) — 271,y + T, T)
— ag™I,? (ag I, (L YT, —6 V) + as (V1,2 V1,2 =92 VL, YT, —6 71,2 ", + 271, WI32))
+ ag*1, [a5 ( — 7 VL2 — 3L VL + VL2 (YL 6””[32))
+ag (= 27127 — AL+ (L, 4+ 1872 )] )
—24r1, (— 20371 (= 371,"T, + 1, (1,2 =21, 1)) ("I, ", + T, (T =27, °T3))
+ag ™1, [ 206 (—ag “L,? + 2as ™1, 1, + 6 ag ™1, 1)
+ a2 *L? ("2 VL2 — 97,2V, — 61,2 T, + 27, ¥1,?)
+ a5, (as 1,17 ("1, "1, — 613) + ag ™I (6 *1,% I, + 71,* — 36 ™1, ™13) )]
+ a3 L2 {206 (= 12 VL2 4 1 = 2L 40T (- 50,0
+ a5 (= 2V — 670,77, — 671+ 9, VLML 40P (L, 4120 )
+2as™, (270,271, VT, + 871, T =T, (L, + 15,2 )] }
— ag ™1, "I,* {262 1, (61, *1," — 871, "I, + 1, 1)
+ as ag “I,2 (=12 ¥1,2 + 12712 "1, *I, + 6 “1,% 1, — 451, “I,?)
+ag™ly [ as (= 471 V1, VT, — 2071, VL, VL, — 3,17 + 372 (M1 + 8™LY) )
+ag (= 871,21, T, — AL I + 27, ("1 + 15717) )| })
(E.1)
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ns = dagag L, "I, [ as“1,? (a5 “1,* + a5 (",* — 181y)) — ag ™I, (as ("I, *I, — 121;)
+ a5 L (" — 571)) — 2a2 1, V]
+ 202 (a2, + 20508 ™1 + a2 71, (U= 127T) — 462 T + 14 azaq ™, )
+ 2ad L4 ("1 — 1,4, — 5721, "I, — 3¥L,21,)
= 4a3 L, (a6 ™1, (T, =1 V=471, ") 4 as ™, (<1, VT, 4671, Y, 49, V)
+ a2 L? [ —4ay™ 17T (205 (T, — 97T) + 9 a6 ™y ) + 2 a3 1,2 (471, 71,
= OV — 971, " Ty) + 17 (262 VL2 (*,P — 2771y) — 18 a2 VI + 63 a5 ag ™, 1) |
— 2077, [ 26370, L (<27 L 4 3YL T + 97, M) + 203,V (206,
— 2ag™I,* "I, + a5 ™1,° I, + 18 ag ™I, *I; — 6 a5 *[,* "I, — 9 a5 "I, *I,)
+ 2051 (a2 71, (1, — 18™13) — 6 a2 L, + a5 ™1, (as ™1, * T, + 21 ag ™1;) )
+ag ™, (205 a5 ™1, (1, — 277T,) — 186371, 71Ty
+ a6 "L, (—4ag ™1, T, — 6051, "I, + 36 a5 Iy + 39 a5 ™1, *1,))|
+ a3 L2V [ 26317 (U1, = 2770) + 2 (L VL, 4 37,2 VT, + 4V, )
+ ag™T, (24.as ™1, Ty + a5 (471, T, — 17712, — 2471, ))|,
(E.2)

ng = a2*Iy* (a21,"1,? + 2a5 51,1, + o212 ("1, = 12°15) — 4021, + 14asas”],"1, )
+ a3 "L ("L ("1, = 6715) = V12 VL T 4 271 VL - 200 (U 3V) )
— a3 "L, (2as (<1217 4 T T 4+ 201V, 4 120,
— ag (=2°,° VL2 + 271 VT, + TV T + 1277
+a2"L? (263717 (271,71, = 571,71 — 3”1, 1)
+ 07 (= 6027 + a5 ag (2712 + 21 D) Iy + a2 ™1, ("L, — 371, VT, — 181, "1,))
+2a9™, ",y (= 8a6 ™y + a5 (—2, V7 + 71V, + 157, )|
+agag ™I | = 202715 (371, VT, + 271y + a5 1, (as ™, (271, "1, — 3™1,)
+ag (271,71, — 372, — 3071, 7L)) + ag ™, (= 2as (1, V1, + 1,2 VT, — 1071, "1y)
+ag (=271, = 21,21+ 1371, T + 6 71,%) )|
+ a3 ™I, 1,2 [ a2 ™12 ("1,* 7T, — 31,2 T, — 181, 1)
+a (201,771, "1+ 8L T + 71 (L, — 671%)) — ag Ly (2051 (21,7 — 1171,) I,
+ag (=271 VL, + 271 L+ L T 4+ 18V + 37 V?) )|
— arTy {ag ", [2a6 (=5 a5 + as™1,) *Ty + a2 T, (2*1,° T, — 3™1,* T, — 301, 1)
+ag (a5 ™1, "1, (271,71, — 3¥15) + ag (271,% + 351,) 1, )|
+ 2031 (47,271, "Iy + 671, "L I+ 9L, VL V17 (27,1 + 3,?))
= 203, [ ag (271,71, + 1,7 1, = 3VL,2 T, + 671, ) + 7T, (as ™, (27T, T,
— 12T, = 157, 7T) + a5 (=112 4 T T + 27T, T+ 127,70 )|
+ ag 1;° [ —2a2™1, (10™, ™1, + 3™L;) + 2 as ag “1,> (“I,>“I, — 3*I,* I, — 18 *,“1,)
+ag ™l (das (=1, "2 + V1,7 VL, + 61, 1) + a5 (=6 712 V1,2 + 401, 1, + 971,7)) | }.
(E.3)
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