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Plastic instabilities associated to the Portevin—Le Chatelier (PLC) effect represent an
instructive example of anomalous plastic deformation in metal alloys. The understand-
ing of this behaviour necessitates bridging different scales: while microscopic interac-
tions between glide dislocations and solute atoms (Dynamic Strain Ageing, DSA) and
mesoscopic dislocation—dislocation interactions (correlated dislocation motion) give rise
to plastic instability, the effect manifests itself by macroscopic inhomogeneity of plastic
flow (deformation banding). The spatio-temporal dynamics of PLC deformation bands is
investigated with a model which incorporates an explicit physical description of the DSA
kinetics. PLC deformation banding is traced back to a wave propagation phenomenon,
and problems regarding spatial coupling and propagation velocity selection are addressed.
Analytical predictions referring to solitary deformation bands, as well as the relevant band
parameters (propagation velocity, localized strain and band width) are derived. The the-
oretical analysis is validated by numerical simulations which display features in good
qualitative agreement with theory and with experimental observations of the PLC effect
in aluminium alloys. They include the appearance of the various types of PLC bands
ranging from solitary Type A, to intermittent Type B and to random Type C.
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Simulated tensile test at constant cross-head velocity v (n=0.1 s, So=1 MPa): space—time localization
map and corresponding stress—time curve in a time window showing Type C and Type B PLC bands.
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SOMMARIO
In questa nota si presenta un modello analitico-numerico del fenomeno di instabilita pla-
stica in soluzioni metalliche solide usualmente noto come effetto Portevin-Le Chatelier.

ABSTRACT
This paper presents an analytical-numerical model of the plastic instability phenomenon
in metallic solid solutions usually referred to as Portevin-Le Chatelier effect.

1. INTRODUCTION

Plastic flow of metallic alloys subjected to various deformation conditions may display
oscillatory behaviour. Under constant applied stress rate the typical stress—strain trace
is wavy (staircase type), while under constant applied strain rate, the stress profile is
serrated (saw-tooth type). This irregular plastic flow is a form of material instability and
associated inhomogeneous deformation (strain localization), which is referred to as Savart—
Masson or, more commonly, as Portevin-Le Chatelier (PLC) effect, see e.g. [1, 3, 7]. The
PLC effect is primary known to arise from Dynamic Strain Ageing (DSA), that is the
dynamic interaction between gliding dislocations and mobile solute atoms, see e.g. [2].
The local DSA processes may induce a negative Strain Rate Sensitivity (SRS) of the
flow stress, namely a decrease of the flow stress with an increasing applied strain rate
and result in macroscopic plastic oscillations. As opposed to inhomogeneous plastic yield
phenomena due to strain-softening (Liiders bands), that may be handled by appropriate
pre-deformation, the unstable plastic flow due to strain-rate-softening (PLC bands) is
repetitive and the PLC range needs to be avoided in the industrial processes (e.g. sheet
forming in automotive industry). Different types of PLC instabilities can be observed
depending on the spatio-temporal organization of the deformation bands. Type C bands
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appear almost at random in the sample without propagating, Type B bands exhibit an
oscillatory or intermittent propagation, and Type A bands propagate continuously as
solitary plastic waves. Correspondingly, the stress—strain curves display regular equi-
distanced stress drops for Type A bands, heavily serrated flow for Type C bands, and a
superposition of the two profiles for Type B bands.

Recently the present authors have proposed a new model of the PLC effect that at-
tempts to bridge the microstructural aspects of DSA with the macroscopic mechanical
behaviour associated with the PLC instabilities [4, 5, 6]. The model is coupled in time and
(one-dimensional) space and introduces two intrinsic time scales in the evolution equations
and a characteristic length scale through a diffusion-like term with spatial second-order
gradient. The main constitutive equations and analytical derivations of such model are
first summarized in the present work. Then, new numerical simulations of the model are
presented, in particular regarding the application of discontinuous strain rate jumps within
the PLC range, or from outside to inside the PLC range, or conversely. The numerical
results display the same rich qualitative patterns of strain localization and correspond-
ing phenomenological stress—strain responses in agreement with [6]. The band kinematics
characteristics of Type A PLC bands are also consistent with systematic numerical simula-
tions provided in [5]. These numerical simulations display very good qualitative agreement
with the experimental observation of the PLC effect in metal alloys.

2. MODEL EQUATIONS AND ANALYTICAL RESULTS

The present model of the PLC effect is based on the following evolution equations for the
plastic strain rate ¢ ; and the rate (AG),; of the additional activation enthalpy AG linked
to DSA (see [4, 5)):

GO + AG + Oext — Oing
kT So ’ (1)

(AG), = D AG.,, +1 (AGe — AG) — % AG .

ey =vexp|—

’

The first Arrhenius-type equation (1), interprets plastic flow as a thermally-activated
process of dislocation motion. () and v are physical parameters representing the el-
ementary plastic strain corresponding to the activation of all mobile dislocations and
the attempt frequency of thermal activation; £=1.38-10"2% J/K is the Boltzmann con-
stant and T the (constant) absolute temperature; G=Go+AG is the Gibbs free ac-
tivation enthalpy, with G the constant activation enthalpy in the absence of DSA;
Oett (€, €4, AG)=0ext (€, € 1, AG)—0int (€) is the effective stress available to propel disloca-
tion motion, namely the difference between the externally applied stress oe (flow stress)
and the internal stress oy, (back stress) resulting from other defects and linked to plastic
strain hardening (quasi-linear strain hardening is assumed, ojn ;=h e, with h a constant
piece-wise linear hardening parameter); Sy is the (positive) instantaneous SRS of the flow
stress Sop=0 Text/0In 5,t|E’AG, which is generally distinct from the asymptotic SRS S, of
the model Sqo=00ex/0Ine |, (see [7]), that may become negative in the PLC range.

The three terms in the second evolution equation (1), interpret respectively the fol-
lowing phenomena: long-range dislocation interaction (diffusion-like coupling based on
spatial second-order gradient), ageing linked to dislocations pinning by the solute atoms,



dislocations unpinning by thermal activation and release of the solute cloud. D is the
diffusion coefficient, with dimensions of [L]?/[t]; AG is the maximum value of the addi-
tional activation enthalpy that can be induced by DSA; 5! is the intrinsic time scale of
the ageing process, which competes with the time scale 2/ ; linked to thermal activation.

To account for a spatially-extended system, the constitutive equations (1) must be
complemented by the ‘machine equation’ oey 1/ Eeg=v/l—1/1 fé ¢ 1 dx, which expresses the
additive composition of elastic and plastic deformation rates to comply with the imposed
cross-head velocity v. Here Eqg=F E,/(E + En) is the effective elastic stiffness of the
system composed of the specimen (Young’s modulus E) and the tensile machine (elastic
modulus F,,), and [ is the parallel length of the specimen.

To simplify the model equations and reduce the number of independent parameters,
the PLC model (1) is better expressed in terms of non-dimensional variables:

{ f=of—0expl-g]f*. (2)
9= 9"+90—9— fexp[-glg. (3)
Here f is the non-dimensional driving force linked to the effective stress, f=fo exp [oer/Sol,
fo=v/n exp[—Go/(kT)], while g is the non-dimensional additional activation enthalpy
g=AG/(kT). Accordingly, go=Go/(kT) and go.=AG«/(kT). The overscored dot de-
notes the derivative with respect to the non-dimensional time #=nt¢, namely ( )=( ).t/ M-
The dimensionless stress rate ¢ and hardening coefficient # are scaled parameters which re-
late to the actual stress rate oex; and the strain hardening coefficient h as 6=0ext+/(1S0),
0=Qh/Sy. The primes in ¢” denote instead differentiation with respect to the non-

dimensional spatial coordinate £=y/n/D z, where /D /n is a characteristic length.

The non-dimensional hardening coefficient 6 is assumed to be small: §<1 (‘weak hard-
ening’). In such case, variable f can be considered as the ‘slow’ variable of the model,
whereas g represents its ‘fast’ variable. The qualitative response of the constitutive model
is based on a limit cycle behavior: the system orbits around the ‘working point’ represent-
ing the steady state values of both variables f and ¢g. Fast variable g oscillates rapidly
at almost constant f between the minimum and maximum values ¢gmin, gmax that may be
estimated according to a ‘switching curve approximation’, see [4, 6]. The ‘working point’
must be taken on the (inaccessible) ascending branch of the adiabatic §=0 characteris-
tic. Provided that g.,>4, such curve is ‘N-shaped’ and the asymptotic SRS of the model
becomes negative for the plastic strain rate range

Joo =2 = \/Goo(goo —4) < 24/ (M) < Goo — 2+ 1/ Goc(goe — 4) - (4)

A linear stability analysis signals the onset of diverging perturbations around the steady
state (‘Hopf bifurcation’) and provides the range of plastic strain rates entering the PLC
regime:

Goo=2—0 = \/(goo—0)2—4goc <2(1+8) £,/ (1) < goo =20 + /(900 —0)*~ 4900 . (5)

The PLC range is somehow narrower than that of the negative asymptotic SRS (4). This
means that plastic instability develops only for some finite negative value of S,,. However,
for weak hardening the two ranges almost coincide, since corrections of the order of <1
can be neglected.

To estimate the kinematics characteristics of solitary plastic waves (Type A PLC
bands), the band plastic strain Ae;, can be considered to accommodate virtually the
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whole applied strain rate v/l. Then, relations v=Aey, ¢;, and v=eyp,, wy, link the applied
cross-head velocity v to the propagation speed ¢, the local plastic strain rate in the band
ey and the band width wy,. Then, out of the three band characteristics ¢y, wy,, Acy, only
two are independent. For the limiting case #<1 the following set of band parameters can
be derived based on few simplifying assumptions, [4, 6]:

1/4 7/ (1 4 Gmin)/2 .
cy = Q ( g )/ \/5 v L wy = 2\/§+ Jmin v A - v ‘ (6)
Q\/ Wy n I

n — Gmin 7 Ch

Omax — Ymin

Notice that the band speed ¢, depends non-linearly on the applied cross-head velocity
v, through eqn (6). Moreover, eqn (6) predicts a square root dependence of ¢, on the
non-dimensional hardening coefficient . The faster the material hardens, the higher is
the band speed, while inversely the lower is the plastic strain carried by the band.

3. NUMERICAL RESULTS

Systematic numerical simulations of the present PLC model have been performed in [5, 6].
Here further numerical results are reported, specifically for simulated tests with a jump
of the applied strain rate within the PLC range, from inside to outside the PLC range,
or viceversa. The adopted model parameters are the following: 7=0.1 s~!, Q=10"°,
So=1 MPa; Ematerial:Emachinezlo5 MPa (Eeff:05 10° MPa), f(O):f0:10_13: 9(0)2900267
D=10"" m?/s, I=0.1 m. Parabolic plastic strain hardening is prescribed by a non-
dimensional hardening coefficient decreasing with the space-average plastic strain &g,
according to the linear dependence 0=0,—2 - 107% £,,, where 60y=Qhy/Se=10"2 is the
initial non-dimensional hardening coefficient corresponding to ho=10> MPa. The gov-
erning equations are discretized both in time and in space and solved through a Finite
Differences integration scheme on the space coordinate at each discrete time instant. A
non-dimensional time step Af=0.1 and a density of 100 point locations (‘blocks’) along the
specimen length have been considered. Fixed boundary conditions have been assumed,
namely, for the first and last blocks, f':g:o at each discrete time instant. To trigger
the PLC instability, the initial condition f(g) is perturbed at certain space locations by
a random multiplicative factor varying between 1 and 30, which alters locally the yield
strength up to a maximum of about 10%.

We report first the results concerning Type C and Type B PLC bands for an applied
strain rate of v=0.45 - 10~7 m/s near the lower bound of the PLC range. Fig. 1 represents
the space—time localization map of the plastic strain rate together with the correspond-
ing stress-time curve in a time range near the beginning of the loading history. The
PLC instability is triggered here by a random initial perturbation at all block locations.
Furthermore, an additional random kick is given at each time step at a random spatial
location. Type C isolated bursts of plastic activity rapidly tend to coalesce and correlate
in time and space giving rise to a true Type B propagation mode.

Next, a series of tests with a sudden jump in the applied cross-head velocities is con-
sidered. Fig. 2 shows the space-time localization map and the stress—time curve for a
simulated test at constant applied cross-head velocity in the PLC range jumping from
v9=0.60 - 10~" m/s to v=3evy=4.89 - 1077 m/s. The example is instructive since it
shows the sudden shift to a multiple band propagation that is typical for the higher strain



rates. These modes are associated to a characteristic wavy profile of the flow stress as it
can be noticed from the stress trace near the end of the loading history.

Figs. 3, 5 and 4, 6 report respectively the simulations for a sudden jump of the strain
rate from outside to inside the PLC range (from 19=0.20 - 10~" m/s to v=4 € 1y=2.17 -
1077 m/s) and viceversa (from vy=1.50 - 1077 m/s to v=2evy=8.15 - 10~" m/s). Fig. 3
shows that, despite the initial random perturbations at all blocks, the initial response of
the system is stable (no oscillations). At the strain rate jump, the system shifts to an
unstable behavior with a reach pattern of PLC bands. As shown by the zoom view of the
stress—strain curve at the strain rate jump (Fig. 5), the system responds instantaneously
with the positive SRS Sy, while then develops a negative asymptotic SRS S, as it can be
observed from the extrapolated stress—strain curve (see [7]). Reverse trends are observed
for the opposite case. Fig. 4 shows a sharp arrest of the PLC bands and a transition
into homogeneous plastic flow. Accordingly, the zoom window in Fig. 6 shows a positive
asymptotic SRS Sy, preventing the PLC effect.

Finally, a strain rate jump is considered in the PLC range of a Type A propagation
example triggered by an initial perturbation at the second block only (Figs. 7-10). Fig. 7
displays a smooth reflective propagation pattern even across the strain rate jump (from
v9=0.50 - 107" m/s to v=21vp=1.00 - 10~ " m/s). The flow stress shows the typical staircase
profile associated to Type A PLC bands. The band kinematics characteristics are filtered-
out automatically from the plastic strain rate and plastic strain maps and represented in
Figs. 8-10 as a function of the imposed hardening coefficient . Fig. 8 shows that the band
speed c, decreases at decreasing hardening in agreement with the square root dependence
estimated in eqn (6). The band speed ranges from about 0.04 to 0.09 blocks per second,
namely, with the assumed length /[=0.1 m and 100 blocks, between 0.04 and 0.09 mm/s.
The band width (Fig. 9) is practically constant according to the approximate evaluation of
eqn (6) and displays a jump from about 9 blocks (mm) to about 14 blocks (mm). Finally,
the plastic strain Ag, carried by the band (Fig. 10) also jumps and shows a converse
1/+/6 dependence according to eqn (6) while ranging smoothly from about 0.06 to 0.22%.
These results on the band characteristics agree well with the theoretical prediction and
with the previous systematic numerical simulations in [5].
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Figure 1: Uniaxial tension test simulated at constant applied cross-head velocity in the
PLC range, v=0.45 - 10" m/s (n=0.1 s~ !, Sy=1 MPa): space—time localization map of
plastic strain rate activity (left axis, scatter plot with circles) and corresponding stress—

time curve (right axis, continuous line) in a time window showing Type C and Type B
PLC bands.
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Figure 2: Uniaxial tension test simulated at constant applied cross-head velocities in the
PLC range jumping from v9=0.60 - 10~7 m/s to v=3evy=4.89 - 10" m/s (n=0.1 s !,
So=1 MPa): space—time localization map of plastic strain rate activity (left axis, scatter
plot with circles) and corresponding post-yield stress-time curve (right axis, continuous
line) showing a sudden change of the PLC modes.
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Figure 3: Uniaxial tension test simulated at constant applied cross-head velocities jumping
into the PLC range from v5=0.20 - 107" m/s to v=4 e 1y=2.17 - 107" m/s (n=0.1s7", Sp=1
MPa): space—time localization map of plastic strain rate activity (left axis, scatter plot
with circles) and corresponding post-yield stress—time curve (right axis, continuous line)
showing the sudden onset of the PLC effect.
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Figure 4: Uniaxial tension test simulated at constant applied cross-head velocities jumping
outside the PLC range from v,=1.50 - 1077 m/s to v=2ev,=8.15 - 107" m/s (n=0.1 s7",
So=1 MPa): space-time localization map of plastic strain rate activity (left axis, scatter
plot with circles) and corresponding post-yield stress-time curve (right axis, continuous
line) showing the abrupt arrest of the PLC instability.
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Figure 5: Uniaxial tension test simulated at constant applied cross-head velocities jumping
into the PLC range from v=0.20 - 107" m/s to v=4 e vy=2.17- 107" m/s (n=0.1s"1, Sp=1
MPa, Q=107°): stress-strain curve (left axis, continuous line) and imposed hardening
coefficient € (right axis, dotted line) in a window near the jump event (see also Fig. 3).
The flow stress shows the positive instantaneous SRS Sy and the negative asymptotic SRS
Ss triggered by the jump into the PLC range.
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Figure 6: Uniaxial tension test simulated at constant applied cross-head velocities jumping
outside the PLC range from vy=1.50 - 1077 m/s to v=2evy=8.15 - 1077 m/s (n=0.1
s, Sp=1 MPa, Q=1075): stress-strain curve (left axis, continuous line) and imposed
hardening coefficient 6 (right axis, dotted line) in a window near the jump event (see
also Fig. 4). The flow stress shows the positive instantaneous SRS Sy and the positive
asymptotic SRS S, consequent to the jump outside the PLC range.
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Figure 7: Uniaxial tension test simulated at constant applied cross-head velocities in the
PLC range jumping from 1v5=0.50 - 10~" m/s to v=21=1.00 - 10 " m/s (n=0.1s"1, Sp=1
MPa): space-time localization map of plastic strain rate activity (left axis, scatter plot
with circles) and corresponding post-yield stress-time curve (right axis, continuous line)
showing reflective propagation of Type A PLC bands and the typical staircase profile of

the stress trace.
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Figure 8: Same as Fig. 7 (n=0.1 s7!, So=1 MPa, Q=1077).

Characteristics of Type A

PLC bands: band speed ¢, as a function of hardening coefficient 6 showing the sudden
acceleration of the PLLC band at the applied strain rate jump and a square root dependence

on @ in agreement with eqn (6).
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Figure 9: Same as Fig. 7 (n=0.1 s7!, Sy=1 MPa, 2=10""). Characteristics of Type A
PLC bands: band width w, as a function of hardening coefficient # showing the jump of
the (nearly constant) band width in agreement with eqn (6).
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Figure 10: Same as Fig. 7 (n=0.1 s7', Sy=1 MPa, 2=1075). Characteristics of Type A
PLC bands: band plastic strain Ae, as a function of hardening coefficient 6 showing a
jump consistent with the band width increase and an inverse square root dependence on
6 in agreement with eqn (6).
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