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Spatial Discretization of Strain LocalizationE. Rizzi1 and K. WillamUniversity of Colorado Boulder, CEAE Dept., Boulder, USA1On leave from Politecnico di Milano, DIS, Milano, ItalyABSTRACTIn recent years novel �nite element techniques have been developed for capturingstrain localization. Their objective is to minimize mesh sensitivity of numericalsolutions in the presence of destabilizing material e�ects due to sti�ness degra-dation, strength softening and loss of associativity. In the context of localizationanalysis two computational features are examined to study the e�ect of arc-length control and of enhanced �nite elements in the form of the incompatibleQM6-element. This element formulation captures discontinuities due to strainlocalization and thus reduces mesh locking due to directional bias.INTRODUCTIONStrain localization is normally associated with the formation of spatial disconti-nuities which entail jumps in the velocity gradient and consequently also in thestrain rate (see Rizzi [10]). The underlying mode of discontinuous bifurcation ischaracterized by the unit vector normal to the discontinuity surface and the unitvector which de�nes the localized motion. Thereby the critical localization modeis a functional of the state of stress and of the underlying tangential constitutivedescription of elastic damage and/or elastoplastic softening.On one hand localization initiates at the constitutive level, whereby the onsetof discontinuous bifurcation is indicated by a zero eigenvalue of the localizationtensor, while the corresponding eigenvector characterizes the mode of bifurca-tion (Borr�e and Maier [2], Ottosen and Runesson [7], Bigoni and Hueckel [1],Rizzi [10]). On the other hand, localization emerges at the structural level withinthe framework of progressive failure analysis which requires solution of hardnonlinearities in the form of spatial discontinuities and strong path-dependence.Localization analysis at the constitutive level provides additional informationwhich should be used to guide the failure simulation on the structural level andto reduce mesh sensitivity due to spatial �nite element discretization (Ortiz etal. [6], Steinmann and Willam [13], Larsson and Runesson [5]). In the presenceof strain localization, progressive failure requires additional regularization of the1



post-bifurcation response in order to ensure mesh-objectivity, i.e. failure pre-dictions which are independent of mesh orientation and mesh density (see deBorst [4] for a concise treatment of this phenomenon). Regularization can beachieved at the constitutive level by introducing enriched material descriptionswhich prevent localization altogether (see Willam and Dietsche [15] for a compre-hensive review of regularization strategies). Alternatively, the energy dissipationmay be controlled in the post-bifurcation response regime with the aid of anintrinsic length scale (Larsson and Runesson [5]). If the emerging failure modeis to be captured correctly, appropriate �nite element strategies must be devel-oped, either by alignment of standard displacement elements along the failureband (Larsson and Runesson [5]), or by enhancement of the eigenspace of the�nite element approximation (Ortiz et al. [6], Steinmann and Willam [13]).This contribution will illustrate the e�ect of two computational features onprogressive failure simulations of the axial extension test problem. To this enda research-oriented �nite element code was extended to accommodate in theclassical arc-length technique by Wempner [14] and Riks [9] in the form of thearc-length adaptation by Cris�eld [3]. A simple back-tracking strategy was in-corporated in order to capture the post-peak and snap-back response behaviorbeyond the limit/bifurcation point. As a second feature the enriched QM6 �niteelement by Wilson and Taylor was used in the mixed variational format advo-cated by Simo and Rifai [12] which was analyzed by Steinmann and Willam [13]in the context of localization analysis. The use of the QM6-element capturesformation of inclined shear bands which are in close agreement with the ana-lytical predictions of discontinuous bifurcation at the constitutive level. Theregularization of post-bifurcation behavior will be addressed in a sequel to thispaper.STRAIN LOCALIZATION CONDITIONSStrain localization is synonymous with the formation of weak discontinuities,i.e. jumps of the strain rather than the displacement �eld across a discontinuitysurface. Consequently, at the onset of bifurcation the displacement rate remainscontinuous, while the rate of the displacement gradients exhibits jumps acrossthe discontinuity surface which separates the continuum into two regions on the`+' and `-' side of the discontinuity surface:[[ _u ]] = _u+ � _u� = 0 ; [[r _u]] = r _u+ �r _u� 6= 0 (1)The jump in the displacement gradient must satisfy Maxwell's compatibilityconditions [[r _u ]]= _M
N, a topic which was examined in detail by Rizzi [10]with a summary of related references. In the Maxwell's relation _ denotes theamplitude of the jump, N the unit vector normal to the discontinuity surface,and M the unit vector which characterizes the localization motion. Mode Ifailure occurs when M kN, and mode II failure when M?N, while all otherangles indicate mixed mode localization.Equilibrium of surface tractions requires that the traction vector _tN =N � _�remains continuous and does not exhibit jumps, i.e. [[_tN ]] = 0. Consideringconstitutive rate relations in the di�erential format _�=Et : �, the combination2



of both kinematic and static conditions across the discontinuity surface leads tothe localization condition Qt �M=0, where Qt de�nes the tangent localizationtensor as Qt = N �Et �N (2)According to this notationM denotes the critical eigenvector which characterizesthe mode of localization associated with the vanishing eigenvalue of Qt. Thelocalization condition may be expressed in terms of the determinant det(Qt)=0(Borr�e and Maier [2]) which is normalized in Fig. 1(a) by the correspondingvalue of the elastic operator to plot its variation as a function of all possiblelocalization directions. Alternatively the localization condition may be expressedin terms of the maximum hardening/softening modulus Hcr which is requiredfor discontinuous bifurcation in a given direction N. The onset of localizationis indicated by the critical localization direction which maximizes the criticalhardening parameter Hloc=Hmaxcr , see Fig. 1(b).The localization condition was studied analytically in the context of bifur-cation analysis of elastoplastic solids (Ottosen and Runesson [7]), and for elasticdegradation (Bigoni and Hueckel [1], Rizzi [10]). Fig. 1 summarizes the local-ization results for J2-plasticity and scalar damage for loading in axial extension(3D/plane strain analysis taken from Rizzi [10]). Fig. 1(a) depicts the variationof the normalized localization indicator �= det(Qep)=det(Qe) as a function ofall possible localization directions 0o � � � 180o assuming perfect elastoplasticbehavior. The minima depend on the Poisson's ratio �, indicating that in planestrain considerable softening is required for localization to occur. Fig. 1(b) illus-trates the localization condition in terms of the maximum hardening modulusHcr for the (1�D) scalar damage model. The di�erences of the critical local-ization directions show strong dependence on Poisson's ratio. In particular, for� = 0:3, elastoplasticity predicts an angle of discontinuity �cr = 41:17o betweenthe loading axis and the normal N to the shear band, whereas the scalar formatof elastic damage results in �cr=33:21o. � = 0� = 0:3� = 0:5Hcr E(�o1)2(a) Perfect J2-elastoplasticity (H=0) (b) (1�D) scalar elastic damage0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
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Figure 1: Analytic conditions for localization in axial extension.
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COMPUTATIONAL STRATEGIES FOR THE POST-PEAK REGIMEIn the presence of strain localization, i.e. when the assumed material law andthe local state of internal variables result in spatial bifurcation, additional tech-niques are required to monitor the numerical solution. First, an indirect force-displacement control must be introduced to overcome limit points and snap-backpoints. The classical arc-length approach by Wempner [14] and Riks [9] with thearc-length adaptation by Cris�eld [3] combined with a simple back-tracking strat-egy captures fairly sharp snap-backs in the case of a brittle failure descriptionswhen the traditional (1�D) damage model is used, see Simo and Ju [11]. Second,the incompatible QM6-element by Wilson and Taylor and its generalization bySimo and Rifai [12] captures localization according to the \Weak LocalizationTest" by Steinmann and Willam [13], and thus should be capable to describeshear-bands without mesh re-alignment.Arc-length controlFor the analysis of the post-peak and snap-back regimes the classical arc-lengthcontrol is imperative which was originally proposed byWempner [14] and Riks [9].In that approach the trial solution �ut in the displacement vector/load parame-ter plane (u; �) is embedded in the tangent plane, while its correction is searchedalong a path perpendicular to the tangent. The �nal increment �u must thensatisfy the constraint equation�u ��u+ (��)2 = (�s)2 (3)where �s indicates the arc-length in that plane. Since the displacement normuses all the components of the displacement vector, a better but problem depen-dent approach extracts the dominant degrees of freedom in the case of highlylocalized deformation patterns (de Borst [4]).The sparsity of the tangent sti�ness matrixKt can be maintained by decom-posing the displacement increment into two contributions �u=���u1+�u2and by solving two decoupled algebraic systems (Ramm [8], de Borst [4])Kt ��u1 = P ; Kt ��u2 = R (4)whereP denotes the load vector andR the out-of-balance force vector (Ramm [8]).Automatic arc-length adjustment is necessary for accelerating the conver-gence and for stabilizing the number of iterations. A simple strategy along theline of the backtracking algorithm with trust regions for numerical unconstrainedoptimization problems decreases the step size for achieving convergence nearlimit points. They are detected by negative diagonal elements of the sti�nessmatrix during pivoting:�s �s=� with 1 � � � 2 (5)where � is conveniently chosen after a preliminary calculation. The arc-lengthmight decrease dramatically near the limit point. An adaptive control of thenumber of iterations for each step allows to vary the step size such that thenumber of iteration remains at the optimal value nopt=4� 5Cris�eld [3] : �s �s (nopt=nprev) Ramm [8] : �s �sq(nopt=nprev) (6)4



The arc-length adjustment by Cris�eld [3] performed better and stabilized thenumber of iterations after each perturbation. Furthermore, upper and lowerbounds on the arc-length were established to assure accuracy and economy ofthe numerical solution.The QM6-ElementThe incompatible QM6-element was originally formulated by Wilson and Taylor(see Steinmann and Willam [13] for application to localization analysis) with thepurpose of enhancing the bending performance of the standard bilinear quadri-lateral Q4-element. The four additional quadratic terms in the displacementexpansion, which are expressed in terms of normalized coordinates �, �, areintroduced to reduce shear locking.u = Ni ui+(1��2) d9+(1��2) d10 ; v = Ni vi+(1��2) d11+(1��2) d12 (7)This enhancement leads to a uniform state of shear strain within the elementdomain, while the direct strain components form a set of complete linear polyno-mials. The original formulation was generalized by Simo and Rifai [12] in termsof a mixed variational principle, in which the augmented strain ~�=��rsu wasexpressed as ~�=B2 � ~d, whereB2 = 24 � 0 0 00 � 0 00 0 � � 35 ; �! 24 1 0 0 � � 0 00 1 0 0 0 � �0 0 1 0 0 0 035 (8)This element satis�es the \Weak Localization Test" proposed by Steinmann andWillam [13] to verify whether an element is able to capture a weak discontinuityat the element level. According to this test the QM6-element should performwell without introducing directional bias, thus no alignment of the mesh shouldbe required along the shear bands.AXIAL EXTENSION PROBLEMThe two computational strategies are used to study the formation of shear bandsin axial extension. A rectangular specimen with the aspect ratio a=b = 1=2 isconsidered under plane strain. Di�erent mesh discretizations are used to examinetheir e�ect on idealizations of the entire specimen and of a quarter subdomainusing double symmetry. The uniform state of stress and strain is perturbed inorder to induce localization. Two imperfections are considered, (i) a geometricimperfection consisting of a small coordinate perturbation at a boundary node,and (ii) lateral constraints at the two end surfaces which simulate the lateralcon�nement of the rigid loading platens.To compare elastic damage and softening plasticity descriptions two materialmodels are considered: (a) the (1�D) scalar damage model which was proposedby Simo and Ju [11] is based on the evolution law D=1�(1�A) ��o=���AeB(��o���),where ��=p� : Eo : �, and where Eo denotes the initial sti�ness with Eo=30,000ksi, �=0.3, A=0.6, B=2 in=pkip, ��o=0:01 pkip=in. (b) the Huber-Mises plas-ticity model which is based on bilinear hardening/softening uses the same elasticmoduli while �y=36 ksi de�nes the yield limit in axial tension/compression.5



The load-displacement diagrams are shown in Fig. 2 for the case of scalardamage. The e�ect of the two alternative perturbations are compared togetherwith the two quadrilateral �nite element formulations. Note the appearance ofsharp snap-back which are captured only by the highly re�ned mesh layouts.
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Figure 2: Axial extension problem of the elastic scalar damage specimen.The capabilities of the QM6 elements are shown in Fig. 3, where the inclinedshear band forms at 45o in the case of the Huber-Mises material with softening(H=-500 ksi). This is in good agreement with the analytical prediction shownin Fig. 1. The uniform deformation state is altered by the lateral constraintsof the loading platens. Fig. 3 compares the e�ects of (16x32) discretization ofthe quarter specimen with those of the entire specimen. It also depicts theresults of the traditional Q4-element and those of the enhanced QM6-element.The symmetry constraint remains insigni�cant with respect to shear bandingsince discretization of the entire specimen leads to the same failure pattern asthe quarter idealization. Separate computations with di�erent aspect ratios ofthe rectangular specimen shows that the 45o orientation is not biased by theparticular a=b= 1=2-ratio. It is interesting to note that the elastoplastic shearband orientation is fairly independent of the variation of �, while the scalardamage material description results in an inclined shear band only for �!0.5. Inall other cases localization appears always in a single row of elements transverseto the load direction indicating mode I type failure, which should emerge only for�!0 according to Fig. 1(b). This seems to be due to the absence of irreversiblestrains which trigger the incompressible mode of plastic bifurcation.6



Figure 3: Comparison of Q4-(left) and QM6-(right) discretizations using 16x32 FE.The e�ect of di�erent locations of the geometric imperfection on the for-mation of shear-bands is shown in Fig. 4. The geometric imperfections are se-quentially placed at the four corners of the rectangular specimen. The deformedmeshes are plotted with di�erent ampli�cation factors, which vary from 25 to100.
Figure 4: Discretization of entire specimen: e�ect of di�erent geometric imperfections.CONCLUSIONSThe arc-length control together with the enhanced QM6-element show promisefor the solution of boundary value problems which exhibit localization. Regu-larization with respect to the directional properties of the mesh layout is accom-plished by the enhanced quadrilateral element, although this should be veri�edwith additional realistic engineering problems. Regularization with respect tomesh densi�cation will be considered in a sequel of this paper.
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