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ABSTRACT: The present paper concerns the optimal tuning of the free parameters of passive Tuned Mass Damper (TMD) 
devices, added to benchmark frame structures taken from the literature and subjected to a given deterministic seismic excitation. 
The tuning procedure is achieved through a numerical optimization approach, namely a Minimax algorithm implemented in a 
MATLAB environment. Different objective functions have been considered, from both kinematic and energy response 
indicators of the primary structure. The optimization process is carried-out in time domain, whereby the dynamic response is 
evaluated numerically by a step-by-step integration based on Newmark’s average acceleration method. In order to assess the 
efficiency of the proposed methodology and investigate the effectiveness of the so-conceived TMD, several numerical tests on 
both single- and multi-degree-of-freedom frame structures endowed with a TMD are performed. The salient numerical results 
are presented in plots and tables. Plots of the optimal TMD parameters (frequency ratio and damping ratio) as a function of mass 
ratio are reported and graphs showing the seismic response reduction in terms of top-floor displacement are provided. Tables 
gathering the optimal TMD parameters and the seismic response reduction at assumed given values of the mass ratio are 
outlined. Comparisons to results obtained from well-known tuning formulas are provided. The achieved output demonstrates the 
reliability of the proposed method and shows that, in principle, the design of an optimal TMD device for a specific seismic event 
is possible. This should have important implications in the framework of adaptive, semi-active and active TMD devices. 
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1 INTRODUCTION 

The study presented in this paper is framed on an on-going 
research project at the University of Bergamo [1-4]. 
Specifically, this work concerns the optimal tuning of the free 
parameters of passive Tuned Mass Damper (TMD) devices, 
added to benchmark frame structures taken from the literature 
and subjected to a given deterministic seismic excitation. Best 
tuning is achieved through a numerical optimization approach 
based on a Minimax algorithm. 

A TMD is a device that is composed of a secondary mass 
attached to a primary structure by a spring element and a 
viscous damper. Despite the original TMD concept was 
primarily developed in naval and mechanical engineering [5], 
such devices are used as well in civil engineering applications, 
in order to reduce, or possibly control, by the most appropriate 
tuning of the TMD parameters (frequency, damping and mass 
ratios), the effects of undesired structural vibrations due to 
different external actions. 

In the literature, one observes that there appear two main 
approaches of best tuning of the TMD parameters, namely 
those that are dependent [5-9] or independent [10-11] of the 
applied actions. Since the fixed-points theory by Den Hartog, 
many tuning methods for the optimal parameters have been 
developed, mostly based either on analytical procedures, 
along the line of Den Hartog’s work itself [5], or on numerical 
optimization methods [6-9], applied to structures subjected to 
ideal loadings, such as harmonic or gaussian white noise force 
or base excitation. Despite the bulk of literature on the tuning 

of TMDs, the efficiency of these devices in reducing the 
dynamic response of civil engineering constructions to 
seismic events is still debated. 

In this paper, a novel tuning technique is proposed, which is 
based on a Minimax optimization method as applied to given 
structural systems (composed by principal structure + TMD), 
subjected to a known seismic input. Thus, the obtained 
optimal parameters are specific to each considered case. The 
optimization process is carried-out in time domain, whereby 
the dynamic response is evaluated numerically by performing 
a step-by-step integration based on Newmark’s average 
acceleration method. 

This procedure is applied to SDOF and MDOF structural 
systems (shear-type buildings) taken from the literature 
[9-11], subjected to El Centro (Imperial Valley, 1940) seismic 
ground motion. These structures are characterized by different 
numbers of storeys and values of inherent damping. Seismic 
response quantities are evaluated for each system in terms of 
different kinematic indicators, such as displacement xS, 
velocity ẋS and acceleration ẍS of the top floor, and also of 
energy indexes, such as kinetic energy TS of the primary 
structure. Furthermore, response quantities are interpreted in 
terms of both maximum and average (RMS) values. Plots 
showing the trends of the optimal TMD parameters and the 
response reduction during the seismic event in the presence of 
a TMD are illustrated. The results obtained from the 
numerical tests are also summarized in table form, where the 
reduction of the seismic response with added TMD is 
quantified. 
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The achieved outcomes show, for the assumed seismic 
input, the considerable reduction of the structural response, 
for all the evaluated quantities. Despite the TMD appears 
obviously more efficient for very low structural damping 
ratios, considerable cutting of the seismic response has been 
observed also for typical values of structural damping that 
occur in civil engineering constructions. Moreover, in order to 
explore the differences with respect to more traditional tuning 
techniques, the resulting parameters, and relevant outcomes, 
have been compared to those that could be obtained by 
traditional Den Hartog’s tuning formulas [5]. 

2 STATEMENT OF THE OPTIMAL TUNING 
PROCEDURE 

2.1 TMD for SDOF and MDOF structures 

A linear structural system composed of a SDOF structure, 
equipped with a TMD located on top of it and subjected to a 
seismic ground acceleration is sketched in Fig. 1. 

 
Figure 1. Linear structural system composed of a primary 

structure (subscript S) and a TMD (subscript T) added on top 
of it, subjected to base acceleration. 

 
The primary structure is characterized by a mass mS, a linear 
elastic stiffness kS and a linear viscous damping coefficient cS. 
The natural frequency ωS and damping ratio ζS of the primary 
structure are defined as usual, i.e. respectively: 

 
SS

S
S

S

S
S

mk
c

m
k

2
, == ζω  (1) 

Conversely, the parameters of the attached TMD device are an 
added secondary mass mT, a stiffness kT of an added mutual 
elastic spring and a damping coefficient cT of an added 
relative viscous damper. As above, the TMD angular 
frequency ωT and damping ratio ζT are respectively: 
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The main free TMD parameters, useful to achieve the most 
appropriate tuning of the added device on the selected 
properties of the primary structure, are defined as follows, in 
terms of mass ratio μ and frequency ratio f of the 
structure + TMD system: 
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and of TMD damping ratio ζT, as already given in Eq. (2). 

In case the given structural system is an MDOF shear-type 
building with n storeys (corresponding to n horizontal degrees 
of freedom), the characteristics parameters above are defined 
as follows: 
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where MS is the n×n diagonal mass matrix of the frame 
structure, ωS,1 is the angular frequency of its first mode of 
vibration and φ S,1 is the corresponding first mode shape, 
normalized so that to have a unit component at the level of the 
top storey [12]. As above, the TMD damping ratio ζT is still 
given as in Eq. (2). Further details on the treatment of the 
equations of motion for both SDOF and MDOF systems with 
added TMD are provided in [4]. 

2.2 Minimax algorithm 

The tuning procedure proposed here is based on a Minimax 
algorithm, implemented in a MATLAB environment by the 
existing fminimax function. The goal of this algorithm is the 
minimization of the worst case, in terms of maximum value, 
of a set of multivariable functions, starting at an initial 
estimation, possibly limited by lower and upper bounds on the 
variable values. 

In the present context, the objective function is a specific 
quantity representative of the dynamic response of the 
structural system, which obviously depends, given the fixed 
primary structure parameters, on the free TMD parameters. 
The approach adopted in this work corresponds to the usual 
modus operandi that takes a given mass ratio μ and searches 
for the optimal values of the two remaining free TMD 
parameters, namely frequency ratio f and damping ratio ζT. 
The objective function that is finally adopted here in the 
numerical tests that follow is represented by average (RMS) 
quantities of the structural response. This is a consequence of 
evidences experienced in [3], where RMS quantities have 
emerged as better objective functions than maximum 
quantities since: a) the Minimax algorithm converges more 
rapidly, consistently and without great difficulties; b) the 
optimal so-conceived TMD assures a higher efficiency in 
reducing the global dynamic response in all the time window 
of analysis. The optimization routine is looped with a time 
solver based on classical Newmark’s average acceleration 
method. A complete flowchart of the numerical algorithm and 
details on the various characteristic parameters, such as the 
tolerances on the objective function and on the TMD tuning 
variables are reported in [4], which represents a companion, 
more comprehensive investigation, reporting further and 
complementary results of the present. 
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3 NUMERICAL TESTS 

In order to explore the reliability of the proposed method, in 
this section various numerical tests are presented, which 
regard benchmark frame structures (shear-type buildings) 
taken from the literature [9-11], subjected to El Centro 
seismic base acceleration recorded on 19 May 1940, as shown 
in Fig. 2. 
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Figure 2. Accelerogram of the assumed seismic input at 

Imperial Valley (El Centro station), 19 May 1940. 

 
The optimal TMD parameters are determined as a function 

of given mass ratio μ, taken in a range suitable for civil 
engineering applications, i.e.: 

 [ ]0.1:0.005:0.005=μ  (5) 

The optimal evaluation of the variable parameters starts 
with the following initial estimation, that takes into account: 
a) the main principle of resonance between primary structure 
and TMD; b) the reference value of the TMD damping ratio 
usually indicated in the literature: 

 0.1,1 == 0
T

0f ζ  (6) 

The variable parameters are also subjected to the following 
given lower and upper bounds in the Minimax algorithm, that 
allow for a wide search interval: 

 1.00.0011.5,0.5 <<<< Tf ζ  (7) 

Besides the evaluation of the optimal TMD parameters, the 
efficiency of the so-conceived TMD has been estimated by the 
computation of the dynamic response of the structural system 
(composed of primary structure and TMD) for a given value 
of the mass ratio, namely μ = 0.05. 

3.1 Numerical tests on a SDOF frame structure 

First, the optimization procedure has been applied to the 
Single-Degree-Of-Freedom system proposed by Leung et 
al. [9], with structural parameters reported in Table 1. Besides 
with the proposed method, the optimal TMD parameters and 
dynamic response for this test have been also computed with 
traditional Den Hartog’s tuning formulas [5]: 

 
μ

μζ
μ +

=
+

=
18

3,
1

1
Tf  (8) 

Table 1. Structural parameters, natural frequency and period 
of the single-storey building (ζS=5%), taken from [9]. 

Storey/ Mass Stiffness Frequency Period 
Mode [× 103 kg] [× 106 N/m] [Hz] [s] 

1 1000 25 0.79578 1.25664 

The optimization process has been performed first by 
assuming as objective function the RMS displacement of the 
primary structure. The trends of the optimal TMD parameters, 
are represented in Figs. 3 and 4, respectively for f and ζT. 
Numerical results obtained for μ = 0.05 in terms of tuning 
parameters (frequency ratio f and damping ratio ζT) and 
dynamic response represented by kinematic and energy 
indicators are summarized in Table 2. The dynamic response 
of the system, composed of primary structure + TMD 
(μ = 0.05), in terms of displacement and kinetic energy of the 
primary structure is also shown, respectively in Figs. 5 and 6. 
These outcomes lead to the considerations pointed-out below.  

The frequency ratio always appears to be above Den 
Hartog’s tuning and takes values larger than 1 for μ < 0.03, 
then decreases on average with an almost-linear trend (Fig. 3). 
The damping ratio, complementary to the frequency ratio, is 
always below Den Hartog’s tuning and with opposite 
curvature trend for μ < 0.03, then takes values with an 
almost-linear increasing trend (Fig. 4). 
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Figure 3. Optimal TMD frequency ratio f as a function of 

mass ratio μ for the single-storey building (ζS=5%), obtained 
at seismic input (Fig. 2) with the proposed method, with 

comparison to classical Den Hartog’s tuning. 
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Figure 4. Same as Fig. 3. Optimal TMD damping ratio ζT. 
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Table 2 below indicates that the response reduction in terms 
of RMS quantities is higher than that on maximum values, 
although the latter is also noticeable. The optimal TMD 
designed with the proposed method is a bit more efficient than 
that obtained from classical Den Hartog’s tuning. 
Nevertheless, the latter is also proven to be effective (despite 
being based on an undamped primary structure, subjected to 
harmonic loading). 

 

Table 2. Optimal TMD parameters and seismic response of a 
single-storey building (ζS=5%) + TMD system (μ=5%), with 

comparison to Den Hartog’s tuning. RMS displacement of the 
structure taken as objective function. 

Optimal parameters of the TMD 

Parameter Den Hartog Minimax 

f 0.95238 0.97305 
ζT 0.13363 0.08561 

Dynamic response of the main structure 

Displacement/ No TMD Den Hartog Minimax 
Kinetic energy Value Value Δ (%) Value Δ (%) 

xS max [m] 0.11460 0.08642 -24.6 0.08045 -29.8 
xS RMS [m] 0.03186 0.02133 -33.0 0.02084 -34.6 

TS max [N m] 178460 135921 -23.8 133152 -25.4 
TS RMS [N m] 27241.2 15829.0 -41.9 14931.3 -45.2 

 

 

Both following Figs. 5 and 6 show that: a) a considerable 
reduction of the seismic response of the primary structure has 
been obtained (on both peak and average responses); b) during 
the first 5 seconds or so from the beginning of the seismic 
event, the TMD does not sort any appreciable effect. This 
observation should have important implications for seismic 
input that may produce significant effects during the early 
instants of shaking. 
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Figure 5. Kinematic response in terms of displacement of the 

single-storey building (ζS=5%), with and without 
TMD (μ=5%). 
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Figure 6. Same as Fig. 5. Energy response in terms of 

kinetic energy. 

Second, the optimization process has been performed as 
well by using as objective function the kinetic energy TS of the 
primary structure. This is conceived to reduce the global 
energy involved in the dynamic behavior of the structure. The 
obtained numerical results are reported in Table 3, which 
could be compared to those in Table 2. It can be noticed that 
the so-conceived TMD further increases f and decreases ζT 
and allows for additional reduction of the dynamic response 
(except for the RMS displacement index, which was the 
previously assumed objective function), especially on the 
targeted index TS RMS, with cut that now really approaches the 
value of 50%. 

 

Table 3. Same as Table 2. RMS kinetic energy of the primary 
structure taken as objective function. 

Optimal parameters of the TMD 

Parameter Den Hartog Minimax 

f 0.95238 1.01753 
ζT 0.13363 0.06006 

Dynamic response of the main structure 

Displacement/ No TMD Den Hartog Minimax 
Kinetic energy Value Value Δ (%) Value Δ (%) 

xS max [m] 0.11460 0.08642 -24.6 0.07933 -30.8 
xS RMS [m] 0.03186 0.02133 -33.0 0.02168 -31.9 

TS max [N m] 178460 135921 -23.8 128008 -28.3 
TS RMS [N m] 27241.2 15829.0 -41.9 14093.8 -48.6 

 

Despite this further gain in structural performance, in the 
following just the RMS displacement will be taken as 
objective function, mainly because of the higher 
computational cost that turns-out to be required for the use of 
the RMS kinetic energy index. A simple example can be 
reported for the cases above: on a standard lap-top computer, 
the optimization process lasts about 3 minutes by assuming as 
target the RMS displacement vs. about 20 minutes for the 
RMS kinetic energy objective function. Higher differences in 
CPU time would also be expected for MDOF structures. 
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About the achieved values on tuned parameters and relevant 
response, it is worthwhile to report that the best performance 
accompanies itself to a high relative displacement between the 
TMD and the primary structure. This is a consequence of two 
basic facts: a) the optimization process refers only to the 
primary structure, i.e. it does not consider the dynamic 
response of the TMD itself; b) the obtained TMD damping 
ratio always takes rather low values (ζT < 10%), with respect 
to those usually reported in the literature (see e.g. [10-11]), 
thus it is not sufficient to damp-down efficiently the TMD 
absolute and relative displacements. 

In order to investigate this issue, which might have 
important practical implications, some further numerical tests 
have been carried-out, for given ranges of both mass ratio and 
TMD damping ratio, in a single-parameter optimization 
process that regards only the TMD frequency ratio. The 
outcomes of these experiments are basically the following: an 
increase of the TMD damping ratio (a value of about 
ζT = 20%-40% is sufficient) allows to reduce significantly the 
TMD kinematic response but implies a corresponding increase 
of the primary structure response. Perhaps, this could be due 
to the fact that a higher TMD damping ratio does not allow to 
take full advantage of the opposite motion between primary 
structure and TMD, on which the TMD principle is actually 
based (see Den Hartog’s tuning concept [5], which has been 
initially conceived in the absence of TMD damping). Indeed, 
an increasing ζT strengthens the mutual link between TMD 
and primary structure and, for high values of ζT, a sort of 
dynamic connection between the two parts of the structural 
system occurs. Moreover, consistent attempts to reduce both 
TMD and primary structure responses might require the use of 
multi-objective optimization approaches, as it has been 
initially attempted in [3]. Further results on all these topics 
will be reported in [4]. 

Additional numerical results with the proposed method are 
also obtained by further taking additional kinematic response 
quantities as objective function, i.e. RMS floor velocity and 
acceleration, as summarized in Table 4. This interesting 
comparison takes inspiration from similar numerical tests and 
relevant results provided in [3]. 

 

 
Table 4. Comparison of results obtained by taking different 

kinematic indicators as objective function, i.e. RMS 
displacement, velocity and acceleration of the structure. 

 Objective function 

 xS RMS [m] ẋS RMS [m] ẍS RMS [m] 

f 0.97305 0.98755 1.00576 
ζT 0.08561 0.08425 0.08731 

xS max [m] 0.08045 0.08015 0.07984 
ẋS max [m] 0.51605 0.51335 0.51041 
ẍS max [m] 4.21104 4.20763 4.20266 

xS RMS [m] 0.02084 0.02091 0.02112 
ẋS RMS [m] 0.11077 0.11052 0.11087 
ẍS RMS [m] 0.77738 0.77463 0.77344 

One may observe that both TMD parameters and response 
reductions are approximately the same for the tuning on 
structural displacement or velocity, while are slightly different 
for the tuning on system acceleration. However, differences 
appear quite marginal. In any case, the important issue 
concerning these attempts is that one may take as well the 
RMS velocity and acceleration as suitable effective objective 
functions towards the optimization process. 

3.2 Numerical tests on MDOF frame structures 

In the following, the proposed method has been further 
applied to MDOF frame structures. The structural systems 
assumed in these tests are frame structures taken from [10] 
and [11]: a three-, a six- and a ten-storey building, 
respectively with inherent damping ratios referred to the 
fundamental mode of vibration of ζS = 0, 0.05 and 0.02. The 
structural parameters are resumed in Tables 5-7. The objective 
function assumed in the optimization processes in all cases is 
the RMS displacement of the top storey. A TMD is added on 
top, with an assumed mass ratio of μ = 5%, as defined in 
Eq. (4). 

 

Table 5. Structural parameters, natural frequencies and 
periods of the three-storey building (ζS=0), taken from [11]. 

Storey/ Mass Stiffness Frequency Period 
Mode [× 103 kg] [× 106 N/m] [Hz] [s] 

1 100 41 1.40443 0.71203 
2 100 38 3.86190 0.25894 
3 100 36 5.56665 0.17964 

 

Table 6. Structural parameters, natural frequencies and 
periods of the six-storey building (ζS=5%), taken from [11]. 

Storey/ Mass Stiffness Frequency Period 
Mode [× 103 kg] [× 106 N/m] [Hz] [s] 

1 8000 10000 1.23357 0.81066 
2 8000 9000 3.26467 0.30631 
3 8000 8000 5.23216 0.19113 
4 8000 7500 6.77099 0.14769 
5 8000 5500 8.33027 0.12004 
6 8000 4500 9.76431 0.10241 

 

Table 7. Structural parameters, natural frequencies and 
periods of the ten-storey building (ζS=2%), taken from [10]. 

Storey/ Mass Stiffness Frequency Period 
Mode [× 103 kg] [× 106 N/m] [Hz] [s] 

1 179 62.47 0.50037 1.99853 
2 170 59.26 1.32631 0.75397 
3 161 56.14 2.15121 0.46485 
4 152 53.02 2.93387 0.34085 
5 143 49.91 3.65320 0.27373 
6 134 46.79 4.29197 0.23299 
7 125 43.67 4.83557 0.20680 
8 116 40.55 5.27169 0.18969 
9 107 37.43 5.59050 0.17887 
10 98 34.31 5.78653 0.17282 
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Results of the numerical tests are organized as follows. 
First, the trends of the optimal TMD parameters are depicted 
in Fig. 7 (frequency ratio) and Fig. 8 (damping ratio). In 
Tables 8-10 the optimal TMD parameters and relevant seismic 
response of the structural systems are summarized. The 
seismic response in terms of top-floor displacement is 
reported in Figs. 9-11, for both cases with and without TMD. 

From the trends of the frequency ratio f, represented in 
Fig. 7 for the various MDOF buildings, it appears that f takes 
higher values (larger than 1 for μ < 0.04) in the case of the 
three-storey building (that has no inherent damping), with 
respect to the other two shear-type buildings (with damping). 
As a general trend, it appears that, as the inherent damping 
ratio increases, the tuned frequency ratio decreases. Rather 
flat dependencies on μ are also displayed by the two cases 
with higher structural damping. Also, the two ideal curves 
f opt (μ) of the three- and six-storey buildings intersect at a 
common point with μ near 5.5%. 
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Figure 7. Optimal frequency ratio f as a function of mass 

ratio μ for the various multi-storey frame buildings. 

Similar increasing trends of ζT opt(μ) as those obtained in 
Fig. 4 for the single-storey building are experienced in Fig. 8 
for the various multi-storey buildings. The relative positioning 
of the three ideal curves ζT (μ) seems to be basically ruled by 
the value of inherent structural damping (i.e. the higher ζS, the 
lower ζT opt). Indeed, the six-storey building (ζS = 5%) results 
in the lower values of ζT opt, while larger values are those 
relative to the ten-storey building (ζS = 2%) and, most of all, 
to the three-storey building with zero inherent damping. 
Hence, it appears that the tuned TMD damping ratio attempts 
to replace possibly-missing inherent damping. 
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Figure 8. Same as Fig. 7. Optimal damping ratio ζT. 

From Tables 8-10 it can be appreciated that the addition of a 
TMD allows for a significant reduction of the seismic 
response. In all three cases the response quantity that is less 
reduced by the presence of the TMD is the maximum 
displacement of the top storey. As expected, the comparative 
efficiency of the TMD decreases as the inherent damping ratio 
increases. Indeed, a response reduction has been obtained in 
Table 8 from about 50% to 90% for the three-storey building 
(ζS=0), while reductions to 20% to 50% are achieved in 
Table 9 for the six-storey building (ζS=5%) and to 20% to 
60% in Table 10 for the ten-storey building (ζS=2%). Notice 
again the resulting high value of ζT in Table 8 for the case of 
the frame with zero inherent damping: the best tuning 
attempts to supply damping to the structural system through 
the added TMD device. Moreover, it seems that the further 
gain in passing from maximum to RMS response indicator 
quantities is lower at increasing inherent damping ratio. 

 
Table 8. Optimal TMD parameters and seismic response of 

the three-storey building (ζS=0) + TMD system (μ=5%). RMS 
displacement of the structure taken as objective function. 

Optimal parameters of the TMD 

f 0.99058 
ζT 0.11166 

Dynamic response of the main structure (top floor) 

Displacement/ No TMD Minimax 
Kinetic energy Value Value Δ (%) 

xS max [m] 0.18362 0.09186 -50.0 
xS RMS [m] 0.10382 0.02067 -80.1 

TS max [N m] 225191 49418.1 -78.1 
TS RMS [N m] 100715 7524.94 -92.5 

 

 

 
 

Table 9. Same as Table 8. Six-storey building (ζS=5%). 

Optimal parameters of the TMD 

f 0.89416 
ζT 0.07192 

Dynamic response of the main structure (top floor) 

Displacement/ No TMD Minimax 
Kinetic energy Value Value Δ (%) 

xS max [m] 0.11518 0.09044 -21.5 
xS RMS [m] 0.02736 0.01803 -34.1 

TS max [N m] 8029253 6013624 -25.1 
TS RMS [N m] 1207838 609186 -49.6 
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Table 10. Same as Table 8. Ten-storey building (ζS=2%). 

Optimal parameters of the TMD 

f 0.98439 
ζT 0.09567 

Dynamic response of the main structure (top floor) 

Displacement/ No TMD Minimax 
Kinetic energy Value Value Δ (%) 

xS max [m] 0.33490 0.27193 -18.8 
xS RMS [m] 0.12002 0.05796 -51.7 

TS max [N m] 453774 212384 -53.2 
TS RMS [N m] 79343.8 29389.0 -63.0 

 

Further proof on the influence of the inherent damping can 
be noticed by observing the dynamic response of the three 
structures, with and without TMD (Figs. 9-11). As expected, 
the greater response reduction has been obtained for the 
undamped three-storey building with ζS = 0, while in 
comparison the TMD appears less effective for the six-storey 
building with larger ζS. As remarked previously, the TMD 
begins to operate in all cases after 3-6 seconds from the 
beginning of the seismic event. This phase of TMD inactivity 
lasts much longer as higher is the fundamental period of the 
structure, fact that results immediately by confronting data in 
Tables 5-7 and output in Figs. 9-11. 
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Figure 9. Kinematic response in terms of displacement of the 
top floor of the three-storey building (ζS=0), with and without 

TMD (μ=5%). 
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Figure 10. Same as Fig. 9. Six-storey building (ζS=5%). 
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Figure 11. Same as Fig. 9. Ten-storey building (ζS=2%). 

 

4 CONCLUSIONS 

A novel numerical tuning procedure for obtaining the optimal 
TMD parameters at given seismic input has been presented. 
This method consists in a direct application of a Minimax 
optimization procedure to different specific cases of frame 
structures, for a single assumed seismic event, so that the 
tuning optimization turns-out the most efficient for each 
considered case. The Minimax method has been proven in the 
literature to provide an efficient and robust numerical method, 
that also ensures good accuracy together with fast 
convergence. The algorithm is applied here in a loop that links 
it to the numerical evaluation of the seismic response in time 
domain, which is achieved through the integration of the 
equations of motion by Newmark’s average acceleration 
method. 

In order to assess the efficiency of the proposed method, 
TMD tuning has been performed for several numerical tests 
carried-out on prototype both SDOF and MDOF frame 
structures, subjected to a single benchmark seismic event (El 
Centro, 1940). The average (RMS) displacement of the top 
storey has been taken as a common objective function for all 
cases, since this response quantity turns-out to be more 
efficient in the numerical method, by producing accurate and 
reliable results. It has been also demonstrated numerically that 
RMS velocity, acceleration and kinetic energy are as well 
suitable objective functions, which lead to results that are 
similar to those obtained by using the RMS displacement as 
objective function. 

The salient results obtained from the numerical tests have 
been depicted qualitatively in plot form and summarized 
quantitatively in table form. The seismic response of the 
structural system has been represented by both kinematic and 
energy response indicators. The plots have pointed-out the 
trends of the optimal TMD parameters in the chosen range of 
mass ratios, which is suitable for civil engineering 
applications, and the seismic response for a given, typical 
value of mass ratio, in terms of the displacement of the top 
storey (and, for the SDOF structure only, also of the kinetic 
energy of the primary structure). Useful comparisons to Den 
Hartog’s tuning formulas have been also provided in both 
plots and tables. The obtained results support the main 
considerations outlined below. 

Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 1898



The optimal TMD parameters evaluated for the SDOF 
structure represent a sort of bilateral validation: on one hand, 
the so-obtained TMD allows to achieve a sensible reduction of 
seismic response, from 25% to 45%, with respect to the case 
without TMD, depending on the considered response quantity. 
On the other hand, the optimal parameters appear to be in line 
with those that could be evaluated by standard tuning 
formulas known in the literature. 

The numerical tests performed on the MDOF structures 
demonstrate the effectiveness of the tuning achieved by the 
present optimization procedure. One may observe that, as the 
structural damping ratio increases, the value of the optimal 
TMD damping ratio decreases and, above all, the TMD 
efficiency in reducing the seismic response also decreases. 
Nevertheless, the so-conceived TMD is demonstrated to be 
quite efficient, since the structural response is heavily reduced 
(from up to 50% for the six-storey structure with ζS = 0.05, to 
60% for the ten-storey building with ζS = 0.02, to even 90% 
for the three-storey building with zero damping), thus also in 
cases of structural damping ratios that are representative of 
real buildings. 

The TMD dynamic response is characterized, on all 
kinematic indexes, by a much higher response, with respect to 
that of the main system. This might have significant 
technological implications in terms of device design, 
allowable stroke and so on. This is a consequence of two main 
facts: a) the optimization process has been applied here just on 
the response quantities of the primary structure; b) the optimal 
values obtained for the TMD damping ratio turn-out relatively 
small. This latter consideration implies that a real 
implemented TMD might need a higher TMD damping ratio, 
so that it may become possible to mitigate also its dynamic 
response. However, this leads to a diminution of the achieved 
gain in dynamic response reduction of the primary structure. 
Such open topic, which appears quite important, especially on 
the side of practical design and installation of TMD devices in 
constructions and mechanical systems, should be further 
investigated in future developments. 

In conclusion, the proposed tuning procedure proofs to yield 
an efficient tuning of the free TMD parameters. In this sense, 
the choice of average response quantities as objective 
functions allows to optimize the TMD performance in the 
context of seismic engineering applications. Furthermore, the 
adopted approach shows that, in principle, the best tuning of a 
TMD device at given seismic input is possible. 

An important topic, which should be discussed in future 
works, is the application of the proposed optimization method 
in the framework of a frequency domain analysis. Also, 
further analyses could consider the validity of the trends 
experienced here for other, bigger and different structures and, 
most important, for different seismic input. This would allow 
to assess further if general trends on the tuning parameters 
could be traced-down in useful terms, as compared to classical 
tuning formulas, for a most convenient and effective reduction 
of the dynamic response of civil engineering constructions 
through the use of TMD devices in the context of seismic 
engineering. 
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