Time consistency of risk measures in markets with transaction costs

Birgit Rudloff
ORFE, Princeton University

joint work with Zach Feinstein (Princeton University)

ICSP 2013 in Bergamo
July 11, 2013
1 Dynamic set-valued risk measures
2 Time consistency
3 Examples and calculation of risk measures
 1 Superhedging under transaction costs
 2 AV@R
4 Multi-portfolio time consistency by composition
Multivariate risks $X \in L_d^p(\mathcal{F}_T)$,
1. Risk measures under transaction costs

Multivariate risks $X \in L^p_d(\mathcal{F}_T)$, useful for example for

- d banks, interconnected. X_i equity value/loss of bank i after random shock (\Rightarrow systemic risk)
1. Risk measures under transaction costs

Multivariate risks $X \in L^p_d(\mathcal{F}_T)$, useful for example for
- d banks, interconnected. X_i equity value/loss of bank i after random shock (\Rightarrow systemic risk)
- d assets with transaction costs
1. Risk measures under transaction costs

Multivariate risks $X \in L^p_d(\mathcal{F}_T)$, useful for example for
- d banks, interconnected. X_i equity value/loss of bank i after random shock (\Rightarrow systemic risk)
- d assets with transaction costs
 - claim $X \in L^p_d(\mathcal{F}_T)$: payoff (in **physical units**) at time T
1. Risk measures under transaction costs

Multivariate risks $X \in L_d^p(\mathcal{F}_T)$, useful for example for

- d banks, interconnected. X_i equity value/loss of bank i after random shock (\Rightarrow systemic risk)
- d assets with transaction costs
 - claim $X \in L_d^p(\mathcal{F}_T)$: payoff (in **physical units**) at time T
 - discrete time, $(\Omega, (\mathcal{F}_t)_{t=0}^T, P)$
1. Risk measures under transaction costs

Multivariate risks \(X \in L_d^p(\mathcal{F}_T) \), useful for example for

- \(d \) banks, interconnected. \(X_i \) equity value/loss of bank \(i \) after random shock \((\Rightarrow \) systemic risk\))
- \(d \) assets with transaction costs
 - claim \(X \in L_d^p(\mathcal{F}_T) \): payoff (in physical units) at time \(T \)
 - discrete time, \((\Omega, (\mathcal{F}_t)_{t=0}^T, P)\)

Collection of initial portfolio vectors that make \(X \) acceptable (w.r.t. some acceptance set \(A_t \subseteq L_d^p(\mathcal{F}_T) \))

\[
R_t(X) = \{ u \in L_d^p(\mathcal{F}_t) : X + u \in A_t \}.
\]
1. Risk measures under transaction costs

Multivariate risks \(X \in L^p_d(\mathcal{F}_T) \), useful for example for

- \(d \) banks, interconnected. \(X_i \) equity value/loss of bank \(i \) after random shock (\(\Rightarrow \) systemic risk)
- \(d \) assets with transaction costs
 - claim \(X \in L^p_d(\mathcal{F}_T) \): payoff (in physical units) at time \(T \)
 - discrete time, \((\Omega, (\mathcal{F}_t)_{t=0}^T, P) \)

Collection of initial portfolio vectors that make \(X \) acceptable (w.r.t. some acceptance set \(A_t \subseteq L^p_d(\mathcal{F}_T) \))

\[
R_t(X) = \{ u \in L^p_d(\mathcal{F}_t) : X + u \in A_t \}.
\]

Usually initial capital just in a few ’eligible’ assets: subspace \(M_t \subseteq L^p_d(\mathcal{F}_t) \), typically \(\dim M_t = m << d \)

\[
R(X) = \{ u \in M_t : X + u \in A_t \}.
\]
1. Risk measures under transaction costs

\[M_t \subseteq L^p_d(\mathcal{F}_t) \quad (M_t)_+ = M_t \cap L^p_d(\mathcal{F}_t)_+ \]

Conditional Set-Valued Risk Measure
1. Risk measures under transaction costs

\[M_t \subseteq L^p_d(\mathcal{F}_t) \quad (M_t)_+ = M_t \cap L^p_d(\mathcal{F}_t)_+ \]

Conditional Set-Valued Risk Measure

A set-valued function
\[R_t : L^p_d(\mathcal{F}_T) \to \mathcal{P}((M_t)_+) = \{D \subseteq M_t : D = D + (M_t)_+\} \]
is a conditional risk measure if
1. Risk measures under transaction costs

\[M_t \subseteq L^p_d(\mathcal{F}_t) \quad (M_t)_+ = M_t \cap L^p_d(\mathcal{F}_t)_+ \]

Conditional Set-Valued Risk Measure

A set-valued function

\[R_t : L^p_d(\mathcal{F}_T) \rightarrow \mathcal{P}((M_t)_+) = \{ D \subseteq M_t : D = D + (M_t)_+ \} \]

is a conditional risk measure if

1. Finite at zero: \(\emptyset \neq R_t(0) \neq M_t \)
1. Risk measures under transaction costs

\[M_t \subseteq L^p_d(\mathcal{F}_t) \quad (M_t)_+ = M_t \cap L^p_d(\mathcal{F}_t)_+ \]

Conditional Set-Valued Risk Measure

A set-valued function

\[R_t : L^p_d(\mathcal{F}_T) \to \mathcal{P}((M_t)_+) = \{D \subseteq M_t : D = D + (M_t)_+\} \]

is a conditional risk measure if

1. Finite at zero: \(\emptyset \neq R_t(0) \neq M_t \)

2. \(M_t \) translative: \(R_t(X + m) = R_t(X) - m \) for any \(m \in M_t \)
1. Risk measures under transaction costs

\[M_t \subseteq L^p_d(\mathcal{F}_t) \quad (M_t)_+ = M_t \cap L^p_d(\mathcal{F}_t)_+ \]

Conditional Set-Valued Risk Measure

A set-valued function
\[R_t : L^p_d(\mathcal{F}_T) \to \mathcal{P}((M_t)_+) = \{ D \subseteq M_t : D = D + (M_t)_+ \} \]

is a conditional risk measure if

1. Finite at zero: \(\emptyset \neq R_t(0) \neq M_t \)

2. \(M_t \) translatvie: \(R_t(X + m) = R_t(X) - m \) for any \(m \in M_t \)

3. Monotone: if \(X - Y \in L^p_d(\mathcal{F}_T)_+ \) then \(R_t(X) \supseteq R_t(Y) \)
1. Risk measures under transaction costs

\[M_t \subseteq L^p_d(\mathcal{F}_t) \quad (M_t)_+ = M_t \cap L^p_d(\mathcal{F}_t)_+ \]

Conditional Set-Valued Risk Measure

A set-valued function

\[R_t : L^p_d(\mathcal{F}_T) \to \mathcal{P}((M_t)_+) = \{ D \subseteq M_t : D = D + (M_t)_+ \} \]

is a conditional risk measure if

1. **Finite at zero:** \(\emptyset \neq R_t(0) \neq M_t \)
2. **\(M_t \) translatve:** \(R_t(X + m) = R_t(X) - m \) for any \(m \in M_t \)
3. **Monotone:** if \(X - Y \in L^p_d(\mathcal{F}_T)_+ \) then \(R_t(X) \supseteq R_t(Y) \)

- A conditional risk measure is **normalized** if for any \(X \in L^p_d(\mathcal{F}_T) \): \(R_t(X) + R_t(0) = R_t(X) \)
1. Risk measures under transaction costs

\[M_t \subseteq L^p_d(\mathcal{F}_t) \quad (M_t)_+ = M_t \cap L^p_d(\mathcal{F}_t)_+ \]

Conditional Set-Valued Risk Measure

A set-valued function
\[R_t : L^p_d(\mathcal{F}_T) \to \mathcal{P}((M_t)_+) = \{ D \subseteq M_t : D = D + (M_t)_+ \} \]

is a conditional risk measure if

1. **Finite at zero:** \(\emptyset \neq R_t(0) \neq M_t \)
2. **Mt translative:** \(R_t(X + m) = R_t(X) - m \) for any \(m \in M_t \)
3. **Monotone:** if \(X - Y \in L^p_d(\mathcal{F}_T)_+ \) then \(R_t(X) \supseteq R_t(Y) \)

- A conditional risk measure is **normalized** if for any \(X \in L^p_d(\mathcal{F}_T) \): \(R_t(X) + R_t(0) = R_t(X) \)
- **Dynamic risk measure:** sequence \((R_t)_{t=0}^T \) of conditional risk measures

B. Rudloff Time consistency of risk measures in markets with transaction costs
Let $\mathcal{G}((M_t)_+) = \{D \subseteq M_t : D = \text{cl co}(D + (M_t)_+)\}$.

Dual Representation, $1 \leq p \leq \infty$

A function $R_t : L^p_d(\mathcal{F}_T) \to \mathcal{G}((M_t)_+)$ is a closed coherent conditional risk measure if and only if there is a nonempty set $\bar{\mathcal{W}}_t \subseteq \mathcal{W}_t$ such that

$$R_t(X) = \bigcap_{(\mathbb{Q}, w) \in \bar{\mathcal{W}}_t} (E_t^{\mathbb{Q}}[-X] + G_t(w)) \cap M_t.$$
Let $\mathcal{G}((M_t)_+) = \{D \subseteq M_t : D = \text{cl co}(D + (M_t)_+)\}$.

Dual Representation, $1 \leq p \leq \infty$

A function $R_t : L^p_d(\mathcal{F}_T) \to \mathcal{G}((M_t)_+)$ is a closed **coherent conditional risk measure** if and only if there is a nonempty set $\bar{\mathcal{W}}_t \subseteq \mathcal{W}_t$ such that

$$R_t(X) = \bigcap_{(\mathcal{Q},w) \in \bar{\mathcal{W}}_t} (E_t^{\mathcal{Q}}[-X] + G_t(w)) \cap M_t.$$

- \mathcal{Q} vector probability measure with components \mathcal{Q}_i ($i=1,...,d$), $\frac{d\mathcal{Q}_i}{d\mathcal{Q}} \in L^q$
Let $\mathcal{G}((M_t)_+) = \{ D \subseteq M_t : D = \text{cl co}(D + (M_t)_+))\}$.

Dual Representation, $1 \leq p \leq \infty$

A function $R_t : L^p_d(\mathcal{F}_T) \to \mathcal{G}((M_t)_+)$ is a closed coherent conditional risk measure if and only if there is a nonempty set $\tilde{\mathcal{W}}_t \subseteq \mathcal{W}_t$ such that

$$R_t(X) = \bigcap_{(Q,w) \in \tilde{\mathcal{W}}_t} (E^Q_t[-X] + \mathcal{G}_t(w)) \cap M_t.$$

- Q vector probability measure with components Q_i ($i=1,...,d$), $\frac{dQ_i}{dQ} \in L^q$ and $E^Q_t[X] = (E^Q_{t1}[X_1],...,E^Q_{td}[X_d])^T$.

B. Rudloff

Time consistency of risk measures in markets with transaction costs
1. Risk measures under transaction costs

Let $\mathcal{G}((M_t)_+) = \{D \subseteq M_t : D = \text{cl co}(D + (M_t)_+)\}$.

Dual Representation, $1 \leq p \leq \infty$

A function $R_t : L^p_d(\mathcal{F}_T) \rightarrow \mathcal{G}((M_t)_+)$ is a closed coherent conditional risk measure if and only if there is a nonempty set $\tilde{\mathcal{W}}_t \subseteq \mathcal{W}_t$ such that

$$R_t(X) = \bigcap_{(Q,w) \in \tilde{\mathcal{W}}_t} (E_t^Q[-X] + G_t(w)) \cap M_t.$$

- \mathcal{Q} vector probability measure with components Q_i ($i=1,...,d$), $\frac{dQ_i}{dQ} \in L^q$ and $E_t^Q[X] = (E_t^{Q_1}[X_1],...,E_t^{Q_d}[X_d])^T$.
- $w \in ((M_t)_+)^+$
1. Risk measures under transaction costs

Let \(\mathcal{G}((M_t)_+) = \{ D \subseteq M_t : D = \text{cl co}(D + (M_t)_+) \} \).

Dual Representation, 1 \leq p \leq \infty

A function \(R_t : L^p_d(\mathcal{F}_T) \to \mathcal{G}((M_t)_+) \) is a closed **coherent conditional risk measure** if and only if there is a nonempty set \(\bar{\mathcal{W}}_t \subseteq \mathcal{W}_t \) such that

\[
R_t(X) = \bigcap_{(\mathcal{Q},w) \in \bar{\mathcal{W}}_t} (E_t^{\mathcal{Q}}[-X] + G_t(w)) \cap M_t.
\]

- \(\mathcal{Q} \) vector probability measure with components \(\mathcal{Q}_i \) (i=1,...,d), \(\frac{d\mathcal{Q}_i}{d\mathcal{Q}} \in L^q \) and \(E_t^{\mathcal{Q}}[X] = (E_t^{\mathcal{Q}_1}[X_1], ..., E_t^{\mathcal{Q}_d}[X_d])^T \).
- \(w \in ((M_t)_+)^+ \)
- \(G_t(w) = \{ v \in L^p_d(\mathcal{F}_t) : E[w^Tv] \geq 0 \} \).
1. Risk measures under transaction costs

Proof of dual representation: Set-valued convex analysis.
Proof of dual representation: Set-valued convex analysis.

analog for convex set-valued risk measures \triangleright Feinstein, Rudloff (2013)

Proof of dual representation: Set-valued convex analysis.

analog for convex set-valued risk measures ▷ Feinstein, Rudloff (2013)

2. Time Consistency

Time Consistency
2. Time Consistency: Background

Time Consistency: scalar case
A dynamic risk measure \((\rho_t)_{t=0}^T\) is **time consistent** if for all \(t\)
A dynamic risk measure \((\rho_t)_{t=0}^T \) is **time consistent** if for all \(t \)
\[\forall X, Y \in L^p_d(\mathcal{F}_T) \text{ with } \rho_{t+1}(X) \geq \rho_{t+1}(Y) \Rightarrow \rho_t(X) \geq \rho_t(Y). \]
2. Time Consistency: Background

Time Consistency: scalar case

A dynamic risk measure \((\rho_t)_{t=0}^T\) is **time consistent** if for all \(t\)
\[\forall X, Y \in L^p_d(\mathcal{F}_T) \text{ with } \rho_{t+1}(X) \geq \rho_{t+1}(Y) \implies \rho_t(X) \geq \rho_t(Y).\]

The following are equivalent
2. Time Consistency: Background

Time Consistency: scalar case

A dynamic risk measure \((\rho_t)^T_{t=0}\) is **time consistent** if for all \(t\)

\[
\forall X, Y \in L^p_d(F_T) \text{ with } \rho_{t+1}(X) \geq \rho_{t+1}(Y) \implies \rho_t(X) \geq \rho_t(Y).
\]

The following are equivalent

- \((\rho_t)^T_{t=0}\) is time consistent
2. Time Consistency: Background

Time Consistency: scalar case

A dynamic risk measure \((\rho_t)_{t=0}^T\) is **time consistent** if for all \(t\)

\[
\forall X, Y \in L^p_d(\mathcal{F}_T) \text{ with } \rho_{t+1}(X) \geq \rho_{t+1}(Y) \Rightarrow \rho_t(X) \geq \rho_t(Y).
\]

The following are equivalent

- \((\rho_t)_{t=0}^T\) is time consistent
- \(\rho_t(X) = \rho_t(-\rho_{t+1}(X))\)
2. Time Consistency: Background

Time Consistency: scalar case

A dynamic risk measure \((\rho_t)_{t=0}^T\) is **time consistent** if for all \(t\)

\[\forall X, Y \in L^p_d(\mathcal{F}_T) \text{ with } \rho_{t+1}(X) \geq \rho_{t+1}(Y) \implies \rho_t(X) \geq \rho_t(Y). \]

The following are equivalent

- \((\rho_t)_{t=0}^T\) is time consistent
- \(\rho_t(X) = \rho_t(-\rho_{t+1}(X))\)
- \(A_t = A_{t,t+1} + A_{t+1}\) where \(A_{t,t+1} = A_t \cap L^p_d(\mathcal{F}_{t+1})\)
2. Time Consistency: Set-Valued

<table>
<thead>
<tr>
<th>Time Consistency</th>
</tr>
</thead>
</table>

B. Rudloff

Time consistency of risk measures in markets with transaction costs
2. Time Consistency: Set-Valued

Time Consistency

A dynamic set-valued risk measure \((R_t)_{t=0}^T\) is **time consistent** if for all \(t\), for all \(X, Y \in L^p_d(\mathcal{F}_T)\) with

\[R_{t+1}(X) \subseteq R_{t+1}(Y) \implies R_t(X) \subseteq R_t(Y).\]
A dynamic set-valued risk measure \((R_t)_{t=0}^{T}\) is **time consistent** if for all \(t\), for all \(X, Y \in L_d^{p}(\mathcal{F}_T)\) with

\[
R_{t+1}(X) \subseteq R_{t+1}(Y) \quad \Rightarrow \quad R_t(X) \subseteq R_t(Y).
\]
2. Time Consistency: Set-Valued

<table>
<thead>
<tr>
<th>Time Consistency</th>
</tr>
</thead>
</table>
| A dynamic set-valued risk measure \((R_t)_{t=0}^{T}\) is **time consistent** if for all \(t\), for all \(X, Y \in L_d^p(\mathcal{F}_T)\) with
| \[R_{t+1}(X) \subseteq R_{t+1}(Y) \implies R_t(X) \subseteq R_t(Y). \] |

<table>
<thead>
<tr>
<th>Multi-Portfolio Time Consistency</th>
</tr>
</thead>
</table>
| A dynamic set-valued risk measure \((R_t)_{t=0}^{T}\) is **multi-portfolio time consistent** if for all \(t\), for all \(X \in L_d^p(\mathcal{F}_T)\) and sets \(Y \subseteq L_d^p(\mathcal{F}_T)\) with
| \[R_{t+1}(X) \subseteq \bigcup_{Y \in \mathcal{Y}} R_{t+1}(Y) \implies R_t(X) \subseteq \bigcup_{Y \in \mathcal{Y}} R_t(Y). \] |
Time Consistency

A dynamic set-valued risk measure \((R_t)_{t=0}^T\) is **time consistent** if for all \(t\), for all \(X, Y \in L_d^p(\mathcal{F}_T)\) with

\[
R_{t+1}(X) \subseteq R_{t+1}(Y) \implies R_t(X) \subseteq R_t(Y).
\]

Multi-Portfolio Time Consistency

A dynamic set-valued risk measure \((R_t)_{t=0}^T\) is **multi-portfolio time consistent** if for all \(t\), for all \(X \in L_d^p(\mathcal{F}_T)\) and sets \(\mathcal{Y} \subseteq L_d^p(\mathcal{F}_T)\) with

\[
R_{t+1}(X) \subseteq \bigcup_{Y \in \mathcal{Y}} R_{t+1}(Y) \implies R_t(X) \subseteq \bigcup_{Y \in \mathcal{Y}} R_t(Y).
\]

In the scalar case \(R_t(X) = \{u \in L^p(\mathcal{F}_t) : \rho_t(X) \leq u\}\)
2. Time Consistency: Set-Valued

Time Consistency

A dynamic set-valued risk measure \((R_t)^T_{t=0}\) is **time consistent** if for all \(t\), for all \(X, Y \in L^p_d(F_T)\) with

\[
R_{t+1}(X) \subseteq R_{t+1}(Y) \quad \Rightarrow \quad R_t(X) \subseteq R_t(Y).
\]

Multi-Portfolio Time Consistency

A dynamic set-valued risk measure \((R_t)^T_{t=0}\) is **multi-portfolio time consistent** if for all \(t\), for all \(X \in L^p_d(F_T)\) and sets \(\mathcal{Y} \subseteq L^p_d(F_T)\) with

\[
R_{t+1}(X) \subseteq \bigcup_{Y \in \mathcal{Y}} R_{t+1}(Y) \quad \Rightarrow \quad R_t(X) \subseteq \bigcup_{Y \in \mathcal{Y}} R_t(Y).
\]

In the scalar case \(R_t(X) = \{u \in L^p(F_t) : \rho_t(X) \leq u\}\) time consistent iff multi-portfolio time consistent.
2. Time Consistency: Set-Valued

Time Consistency

A dynamic set-valued risk measure \((R_t)^T_{t=0}\) is **time consistent** if for all \(t\), for all \(X, Y \in L^p_d(\mathcal{F}_T)\) with

\[
R_{t+1}(X) \subseteq R_{t+1}(Y) \implies R_t(X) \subseteq R_t(Y).
\]

Multi-Portfolio Time Consistency

A dynamic set-valued risk measure \((R_t)^T_{t=0}\) is **multi-portfolio time consistent** if for all \(t\), for all \(X \in L^p_d(\mathcal{F}_T)\) and sets \(\mathcal{Y} \subseteq L^p_d(\mathcal{F}_T)\) with

\[
R_{t+1}(X) \subseteq \bigcup_{Y \in \mathcal{Y}} R_{t+1}(Y) \implies R_t(X) \subseteq \bigcup_{Y \in \mathcal{Y}} R_t(Y).
\]

In the scalar case \(R_t(X) = \{u \in L^p(\mathcal{F}_t): \rho_t(X) \leq u\}\) \((\rho_t)^T_{t=0}\) time consistent iff multi-portfolio time consistent.

In higher dimensions: multi-portfolio time consistency implies time consistency.
Multi-portfolio time consistency

For a normalized dynamic set-valued risk measure $(R_t)^T_{t=0}$ the following is equivalent
Multi-portfolio time consistency

For a normalized dynamic set-valued risk measure \((R_t)_{t=0}^T\) the following is equivalent

- \((R_t)_{t=0}^T\) is multi-portfolio time consistent
2. Time Consistency: Set-Valued

Multi-portfolio time consistency

For a normalized dynamic set-valued risk measure \((R_t)_{t=0}^T\) the following is equivalent

- \((R_t)_{t=0}^T\) is multi-portfolio time consistent

- \(R_t(X) = \bigcup_{Z \in R_{t+1}(X)} R_t(-Z) =: R_t(-R_{t+1}(X))\)
Multi-portfolio time consistency

For a normalized dynamic set-valued risk measure \((R_t)_{t=0}^T\) the following is equivalent

- \((R_t)_{t=0}^T\) is multi-portfolio time consistent
- \(R_t(X) = \bigcup_{Z \in R_{t+1}(X)} R_t(-Z) =: R_t(-R_{t+1}(X))\)

this is a set-valued Bellman’s principle!
2. Time Consistency: Set-Valued

Multi-portfolio time consistency

For a normalized dynamic set-valued risk measure \((R_t)_{t=0}^T\) the following is equivalent

- \((R_t)_{t=0}^T\) is multi-portfolio time consistent

- \(R_t(X) = \bigcup_{Z \in R_{t+1}(X)} R_t(-Z) =: R_t(-R_{t+1}(X))\)

 this is a set-valued Bellman’s principle!

- \(A_t = A_{t,t+1} + A_{t+1}\) where \(A_{t,t+1} = A_t \cap M_{t+1}\)
3. Examples

Examples
3.1 Superhedging

(Kabanov 99, Schachermayer 04, Pennanen, Penner 08, ...)

B. Rudloff Time consistency of risk measures in markets with transaction costs
3.1 Superhedging

(proportional transaction costs at time t: closed convex cone $\mathbb{R}^d_+ \subseteq K_t(\omega) \subseteq \mathbb{R}^d$ (solvency cone), positions transferrable into nonnegative positions)
3.1 Superhedging

(Kabanov 99, Schachermayer 04, Pennanen, Penner 08,...)

- proportional transaction costs at time t: closed convex cone $\mathbb{R}^d_+ \subseteq K_t(\omega) \subseteq \mathbb{R}^d$ (solveny cone), positions transferrable into nonnegative positions

- $(V_t)_{t=0}^T$ self-financing portfolio process if

\[V_t - V_{t-1} \in -K_t \quad P - a.s. \quad \forall t \in \{0, ..., T\} \quad (V_{-1} \equiv 0) \]
3.1 Superhedging

(Kabanov 99, Schachermayer 04, Pennanen, Penner 08,...)

- proportional transaction costs at time t: closed convex cone $\mathbb{R}_+^d \subseteq K_t(\omega) \subseteq \mathbb{R}^d$ (solvency cone), positions transferrable into nonnegative positions

- $(V_t)_{t=0}^T$ self-financing portfolio process if

\[V_t - V_{t-1} \in -K_t \quad P - a.s. \quad \forall t \in \{0,...,T\} \quad (V_{-1} \equiv 0) \]

- $L^p_d(\mathcal{F}_T)$-attainable claims (from zero cost at time t)

\[C_{t,T} = \sum_{s=t}^{T} -L^p_d(\mathcal{F}_s; K_s) \]
3.1 Superhedging

(Kabanov 99, Schachermayer 04, Pennanen, Penner 08,...)

- proportional transaction costs at time t: closed convex cone $\mathbb{R}^d_+ \subseteq K_t(\omega) \subseteq \mathbb{R}^d$ (solvency cone), positions transferrable into nonnegative positions

- $(V_t)_{t=0}^T$ self-financing portfolio process if

$$V_t - V_{t-1} \in -K_t \quad P - a.s. \quad \forall t \in \{0, ..., T\} \quad (V_{-1} \equiv 0)$$

- $L^p_d(\mathcal{F}_T)$-attainable claims (from zero cost at time t)

$$C_{t,T} = \sum_{s=t}^{T} -L^p_d(\mathcal{F}_s; K_s)$$

Set of superhedging portfolios for $X \in L^p_d(\mathcal{F}_T)$

$$SHP_t(X) := \{ u \in L^p_d(\mathcal{F}_t) : -X + u \in -C_{t,T} \}. $$
Under robust no arbitrage condition (NAr):
\[R_t(X) := SHP_t(-X) \]
is a closed market-compatible \textbf{coherent dynamic risk measure} on \(L^p_d(F_T) \) that is \textbf{multi-portfolio time consistent}.
3.1 Superhedging

Under robust no arbitrage condition (NAr):
$R_t(X) := SHP_t(-X)$ is a closed market-compatible **coherent dynamic risk measure** on $L^p_d(\mathcal{F}_T)$ that is **multi-portfolio time consistent**.

It follows

$$SHP_t(X) = \bigcup_{Z \in SHP_{t+1}(X)} SHP_t(Z) =: SHP_t(SHP_{t+1}(X)).$$
3.1 Superhedging

Under robust no arbitrage condition (\(\text{NA}^r\)):
\(R_t(X) := SHP_t(-X)\) is a closed market-compatible coherent dynamic risk measure on \(L^p_d(\mathcal{F}_T)\) that is multi-portfolio time consistent.

It follows

\[
SHP_t(X) = \bigcup_{Z \in SHP_{t+1}(X)} SHP_t(Z) =: SHP_t(SHP_{t+1}(X)).
\]

This is equivalent to a sequence of linear vector optimization problems that can be solved by Benson’s algorithm for finite \(\Omega\).
Under robust no arbitrage condition (NA^r):
\(R_t(X) := SHP_t(-X) \) is a closed market-compatible coherent dynamic risk measure on \(L^p_d(\mathcal{F}_T) \) that is multi-portfolio time consistent.

It follows

\[
SHP_t(X) = \bigcup_{Z \in SHP_{t+1}(X)} SHP_t(Z) =: SHP_t(SHP_{t+1}(X)).
\]

This is equivalent to a sequence of linear vector optimization problems that can be solved by Benson’s algorithm for finite \(\Omega \).

Loehne, Rudloff 13 (under revision), Hamel, Loehne, Rudloff 13 (submitted)
3.1 Superhedging

Under robust no arbitrage condition (NA$_r$):

\[R_t(X) := SHP_t(-X) \]

is a closed market-compatible coherent dynamic risk measure on \(L^p_d(\mathcal{F}_T) \) that is multi-portfolio time consistent.

It follows

\[SHP_t(X) = \bigcup_{Z \in SHP_{t+1}(X)} SHP_t(Z) =: SHP_t(SHP_{t+1}(X)). \]

This is equivalent to a sequence of linear vector optimization problems that can be solved by Benson’s algorithm for finite \(\Omega \).

Loehne, Rudloff 13 (under revision), Hamel, Loehne, Rudloff 13 (submitted)

recursion also in Roux, Zastawniak 13, but no connection to algorithms
Multiple correlated assets (basket options):
3.1 Superhedging

Multiple correlated assets (basket options):

Tree approximating \((d - 1)\)-dim Black-Scholes-Model by Korn, Müller (09)
3.1 Superhedging

Multiple correlated assets (basket options):

Tree approximating \((d - 1)\)-dim Black-Scholes-Model by Korn, Müller (09)

Example: Exchange Option, \(d = 3\) includes transaction costs for bond

<table>
<thead>
<tr>
<th>(r = 5%), (\lambda = (1%, 2%, 4%)^T)</th>
<th>((13.341 \ 0.000 \ -7.760 \ 0.347 \ 0.498 \ 0.584 \ -0.446 \ -0.331 \ -0.260))</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertex of (SHP_0(X))</td>
<td>(\pi_0^a(X)) (in bonds)</td>
</tr>
<tr>
<td></td>
<td>(\pi^a(X)) (in cash)</td>
</tr>
<tr>
<td>(r = 5%), (\lambda = (0.2%, 0.4%, 0.1%)^T)</td>
<td>((12.403 \ 8.230 \ 0.000 \ -6.236 \ -4.237 \ 0.308 \ 0.353 \ 0.441 \ 0.507 \ 0.486 \ -0.433 \ -0.394 \ -0.317 \ -0.257 \ -0.276))</td>
</tr>
<tr>
<td>vertex of (SHP_0(X))</td>
<td>(\pi_0^a(X)) (in bonds)</td>
</tr>
<tr>
<td></td>
<td>(\pi^a(X)) (in cash)</td>
</tr>
</tbody>
</table>
3.1 Superhedging

The set $SHP_t(X)$ can be equivalently described by a family of scalarizations

$$\{ \phi_v(X) = \text{ess}\inf_{u \in SHP_t(X)} v^T u; \quad v \in K_t^+ \}$$
3.1 Superhedging

The set $SHP_t(X)$ can be equivalently described by a family of scalarizations

$$\{ \phi_v(X) = \text{ess. inf}_{u \in SHP_t(X)} v^T u; \quad v \in K_t^+ \}$$

Historically, the superhedging price was studied in one currency.
3.1 Superhedging

The set $SHP_t(X)$ can be equivalently described by a family of scalarizations

$$\{\phi_v(X) = \text{ess.inf}_{u \in SHP_t(X)} u^T v; \quad v \in K_t^+ \}$$

Historically, the superhedging price was studied in one currency Jouini, Kallal (95) representation for d assets:

$$\pi^a(X) = \sup_{(S_t, Q) \in Q} E^Q[X^T S_T],$$

where Q is the set of all processes $(S_t)_{t=0}^T$ with $S_t \in K_t^+$ for all t and their equivalent martingale measures Q.
3.1 Superhedging

The set $\text{SHP}_t(X)$ can be equivalently described by a family of scalarizations

$$\{ \phi_v(X) = \text{ess. inf} \ u \in \text{SHP}_t(X) \ v^T u; \quad v \in K_t^+ \}$$

Historically, the superhedging price was studied in one currency Jouini, Kallal (95) representation for d assets:

$$\pi^a(X) = \sup_{(S_t,Q) \in \mathcal{Q}} E^Q[X^T S_T],$$

where \mathcal{Q} is the set of all processes $(S_t)_{t=0}^T$ with $S_t \in K_t^+$ for all t and their equivalent martingale measures Q.

It holds

$$\pi^a(X) = \text{ess. inf}_{u \in \text{SHP}_0(X) \cap M} v^T u,$$

for $M = \mathbb{R}e^1$ and $v = e^1$.
The set $SHP_t(X)$ can be equivalently described by a family of scalarizations

$$\{\phi_v(X) = \operatorname{ess.inf}_{u \in SHP_t(X)} u^T v; \quad v \in K_t^+ \}$$

Historically, the superhedging price was studied in one currency Jouini, Kallal (95) representation for d assets:

$$\pi^a(X) = \sup_{(S_t, Q) \in Q} E^Q[X^T S_T],$$

where Q is the set of all processes $(S_t)_{t=0}^T$ with $S_t \in K_t^+$ for all t and their equivalent martingale measures Q.

It holds

$$\pi^a(X) = \operatorname{ess.inf}_{u \in SHP_0(X) \cap M} u^T v,$$

for $M = \mathbb{R}e^1$ and $v = e^1$. Thus, the scalar risk measure $\pi^a(X)$ involves the sets $SHP_t(X)$ for all t!!! The reason is time consistency!
3.2 AV@R

Definition: set-valued AV@R (static case):

HAMEL, RUDLOFF, YANKOVA 12
Definition: set-valued AV@R (static case): Hamel, Rudloff, Yankova 12

Let $\alpha \in (0, 1]^d$ and $X \in L^1_d$.

$$AV@R_{\alpha}^{reg}(X) = \left\{ \text{diag}(\alpha)^{-1} \mathbb{E}[Z] - z : Z \in (L^1_d)_+, X + Z - z \mathbb{I} \in (L^1_d)_+, z \in \mathbb{R}^d \right\} \cap M.$$
Definition: set-valued AV@R (static case): Hamel, Rudloff, Yankova 12

Let $\alpha \in (0, 1]^d$ and $X \in L^1_d$.

$$AV@R^\alpha_{reg} (X) = \left\{ \text{diag}(\alpha)^{-1} \mathbb{E}[Z] - z :
Z \in \left(L^1_d \right)_+, X + Z - z\mathbb{I} \in \left(L^1_d \right)_+, z \in \mathbb{R}^d \right\} \cap M. $$

Remark: If $m = d = 1$: $AV@R^\alpha_{reg} (X) = AV@R^\alpha_{sca} (X) + \mathbb{R}_+$
Definition: set-valued AV@R (static case): Hamel, Rudloff, Yankova 12

Let $\alpha \in (0, 1]^d$ and $X \in L_1^d$.

$$AV@R^{reg}_\alpha(X) = \left\{ \text{diag}(\alpha)^{-1} E[Z] - z : \right.$$

$$Z \in (L_1^d)_+, X + Z - z \mathbb{I} \in (L_1^d)_+, z \in \mathbb{R}^d \right\} \cap M.$$

Remark: If $m = d = 1$: $AV@R^{reg}_\alpha(X) = AV@R^{sca}_\alpha(X) + \mathbb{R}_+$

with

$$AV@R^{sca}_\alpha(X) = \inf_{z \in \mathbb{R}} \left\{ \frac{1}{\alpha} E \left[(-X + z \mathbb{I})^+ \right] - z \right\}$$

which is optimized certainty equivalent representation of the AV@R by Rockafellar and Uryasev ’00.
Good-deal bounds

The market extension R^{mar} of a risk measure R satisfies

$$R^{mar} (X) = \inf_{\mathcal{P}(M_+)} \{ R(X + Y) : Y \in C_{0,T} \}.$$

and is a again set-valued risk measure, corresponds to so called Good-deal price bounds.
Good-deal bounds

The market extension R^{mar} of a risk measure R satisfies

$$R^{mar} (X) = \inf_{\mathcal{P}(\mathcal{M}_+)} \{R(X + Y) : Y \in C_{0,T}\}.$$

and is a again set-valued risk measure, corresponds to so called Good-deal price bounds.

Let Ω be finite.
Good-deal bounds

The market extension R^{mar} of a risk measure R satisfies

$$R^{mar}(X) = \inf_{\mathcal{P}(M_+)} \{ R(X + Y) : Y \in C_{0,T} \}.$$

and is a again set-valued risk measure, corresponds to so called Good-deal price bounds.

Let Ω be finite. Then, $AV@R_{\alpha}^{reg}(X)$ and $AV@R_{\alpha}^{mar}(X)$ can be calculated by solving a linear vector optimization problem (using Benson’s algorithm)
Example: $d = 12$ correlated assets, $m = 2$, one-period model, X payoff of an outperformance option.

Figure: $AV@R_{\alpha}^{mar} (X)$ (left) and its geometric dual (right).
dynamic version \((AV@R_\alpha)_t\) is not multi-portfolio time-consistent, nor time consistent...
3.2 AV@R

- dynamic version $(AV@R_\alpha)_t$ is not multi-portfolio time-consistent, nor time consistent...
- can construct a multi-portfolio time consistent version of $(AV@R_\alpha)_t(X)$ by composition
dynamic version \((AV@R_\alpha)_t\) is not multi-portfolio time-consistent, nor time consistent...

can construct a multi-portfolio time consistent version of \((AV@R_\alpha)_t(X)\) by composition

To construct a multi-portfolio time consistent version of \((R_t)^T_{t=0}\):
dynamic version \((AV@R_\alpha)_t\) is not multi-portfolio time-consistent, nor time consistent...

can construct a multi-portfolio time consistent version of
\((AV@R_\alpha)_t(X)\) by composition

To construct a multi-portfolio time consistent version of
\((R_t)^T_{t=0}\):

\[
\tilde{R}_T(X) = R_T(X),
\]
dynamic version \((AV@R_\alpha)_t\) is not multi-portfolio
time-consistent, nor time consistent...

- can construct a multi-portfolio time consistent version of
\((AV@R_\alpha)_t\) \((X)\) by composition

- To construct a multi-portfolio time consistent version of
\((R_t)^T_{t=0}\):

\[
\tilde{R}_T(X) = R_T(X),
\]
\[
\tilde{R}_t(X) = \bigcup_{Z \in \tilde{R}_{t+1}(X)} R_t(-Z)
\]
dynamic version \((AV@R_\alpha)_t\) is not multi-portfolio time-consistent, nor time consistent...

can construct a multi-portfolio time consistent version of \((AV@R_\alpha)_t\) \((X)\) by composition

To construct a multi-portfolio time consistent version of \((R_t)^T\) \(_{t=0}\):

\[
\tilde{R}_T(X) = R_T(X),
\]

\[
\tilde{R}_t(X) = \bigcup_{Z \in \tilde{R}_{t+1}(X)} R_t(-Z)
\]

\((\tilde{R}_t)^T_{t=0}\) is multi-portfolio time consistent
3.2 AV@R

- dynamic version \((AV@R_\alpha)_t\) is not multi-portfolio time-consistent, nor time consistent...

- can construct a multi-portfolio time consistent version of \((AV@R_\alpha)_t(X)\) by composition

- To construct a multi-portfolio time consistent version of \((R_t)_t^{T}\):

\[
\tilde{R}_T(X) = R_T(X),
\]
\[
\tilde{R}_t(X) = \bigcup_{Z \in \tilde{R}_{t+1}(X)} R_t(-Z)
\]

- \((\tilde{R}_t)_t^{T}\) is multi-portfolio time consistent
4. Time Consistency: Stability

Dual representation of composed AV@R (here $M_t = L^p_d(F_t)$)

\[
\widetilde{AV@R}_t^\alpha (X) := \bigcap_{(Q,w) \in \widetilde{W}_t^\alpha} (E_t^Q[-X] + G_t(w)),
\]

where

\[
\widetilde{W}_t^\alpha = \{(Q, w) \in M_d^\mathbb{P} \times L^q_d(F_t) : \forall \tau \in \{t, \ldots, T-1\} : \mathbb{P}\left(\xi_{\tau+1}(Q^i) \leq (\alpha_i^\tau)^{-1} \text{ or } w_i = 0\right) = 1 \quad i = 1, \ldots, d\}.
\]

Thank you!